HOMEWORK SET 1
CSCI5527 Deep Learning (Fall 2022)

Due 11:59 pm, Oct 16 2022

Instruction Your writeup, either typeset or scanned, should be a single PDF file. For problem
requiring coding, please organize all codes for each problem into a separate Jupyter notebook file
(i.e., .ipynb file). Your submission into Canvas/Gradescope should include the single PDF and all
the notebook files—Please do not zip them! No late submission will be accepted. For each problem,
your should acknowledge your collaborators if any. For problems containing multiple subproblems,
there are often close logic connections between the subproblems. So whenever possible, try to build
on previous ones, rather than work from scratch.

Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. R" is the space of
n-dimensional real vectors, and similarly R"**" is the space of m x n real matrices. The dotted equal
sign = means defining.

Problem 1 (Neural networks can represent all Boolean functions; 6/15) The standard perceptron
is a single-layer, single-output neural network with the step function as the activation, i.e.,

f(x) = step (wTx +b),

where step (z) = 1 if z > 0 and 0 otherwise. Geometrically, f is a {0, 1}-valued function with the
hyperplane {z : wTx + b = 0} as the separating boundary between the 0- and the 1-region; see
Fig. 1 (left).

} = X, | X, | X [ X [Xs |V
+ 00 1 1 0 1
/' W 01 0 1 1 1
> 0O 1 1 0 0 1
1 o o o [1 H
/ BEREN N 1
N wlx +b=10 i 1 0o 0 1 @

Figure 1: (left) Geometric illustration of the perceptron. (right) An example truth table.

Consider Boolean functions {0,1}" — {0, 1}. We will work out how arbitrary Boolean functions
can be represented by two-layer or deep neural networks.

(a) Consider n = 1 first. Show that the NOT function can be implemented using a single-input
perceptron by setting the weight w and the bias b appropriately. (0.5/15)



(b) Now consider the case n = 2. Show that the two-input AND, OR functions can be implemented
using a two-input perceptron. Hint: the geometric view might help. For example, for the AND
function, we are effectively trying to separate the point (1, 1) from (1,0), (0,1) and (0,0). The
hint applies to all subsequent subproblems of Problem 1. (1/15)

(c) Can we encode the XOR function (https://en.wikipedia.org/wiki/Exclusive_or) using a
two-input perceptron? How if yes? Why if not? (1/15)

(d) For general n > 2, we consider general AND functions that take n inputs, where each input is
either x; or 7;. A typical such function looks like x; - 73 - 73 - ©—1 - . Show that all general
n-input AND function can be implemented using an n-input perceptron. (1/15)

(e) Similar to (d), show that all n-input general OR function can be implemented using an n-input
perceptron. (1/15)

(f) Any Boolean function is fully specified by a list of all variable combinations that are evaluated
to 1. Such list is often tabulated and the resulting table is called the truth table. For example,
in the truth table of Fig. 1 (right), the Boolean function represented reads

1 T2X3T4T5 + T1L2XTIL4X5 + T1X2X3T4 T + X1T2 T3 T4 T + L1T2X3L4T5 + X1T2T3 T4Ts5,

where product - (which is omitted) means AND and summation + means OR. In Boolean logic,
this is called the disjunctive normal form (https://en.wikipedia.org/wiki/Disjunctive_
normal_form). All Boolean functions can be represented in the disjunctive normal form.

Based on these, show that all n-input Boolean functions can be represented by a two-layer
neural network. (1/15) In the worst case, how many hidden nodes are needed? (0.5/15)

Problem 2 (Universal approximation property of ReLU networks;
3/15) Recall how we argued that two-layer neural networks with
the sigmoid activation function (ie., o (2) = +i_z ) can approx- .
imate any functions that map R to R. We constructed the step >
function and then the bump function, and finally we sum up the 2
bumps to form the approximation. :
Now let’s work out a similar property for two-layer neural net-
works with the ReLU activation. The ReLU function is o (z) = oo
max (0, z), as shown in the right figure. We now follow the same step-bump-sum roadmap to work

out the argument.

(a) Show that we can use two ReLU’s, probably shifted versions of the standard one, to construct
an arbitrary good approximation to the step function. Please draw the construction as a neural
network. (1/15)

(b) Show that we can further construct "bump" functions out of the step functions. (1/15)

(c) Now we are ready to sum up shifted copies of bumps to approximate arbitrary functions.
How many layers we need in total? (1/15)


https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Disjunctive_normal_form

Problem 3 (Jacobian, gradient and Hessian from expansions, or chain rule; optimality conditions;
4/15) To derive Jacobian, gradient, and Hessian below, you can choose applying the chain rule,
the Taylor expansion trick, or any mixture of them. But, you may find that the Taylor trick mixed
together with basic gradient rules (sum, product, quotient, and sometime chain rule) much easier
and quicker than applying the chain rule alone.

(a) Derive the gradient and Hessian of the quadratic function h () = 7 Ax + bTx and remember
to include the detailed steps. Here A is square but not necessarily symmetric. (0.5/12)

(b) We talked of the algebraic and geometric definition of convex functions in class. But it’s often
a tedious process to tell convex functions using the definition. To ease the job, we rely on
additional properties and characterizations. A twice-differentiable function f(x) is convex if
and only if its Hessian is positive semidefinite, i.e., V2f = 0 for all . Apply this to i (z) in
(a) and state the condition for i () being convex. (0.5/12) Do we have a unique minimizer or
not for h (x), and why? (0.5/12)

(c) We talked of the first- and second-order optimality conditions for min, f (x) for a generic
differentiable function f. What are the first- and second-order optimality conditions for
max, f (x),i.e., conditions for locating local maximizers? And why? (1/12)

(d) We will not think much of constrained optimization in this course. But let’s play with a simple
yet important one here. Consider constrained optimization problems of the form

min f(x) st g(x)=0,

where g () is a vector-to-vector function and conveniently collects together all the single scalar
constraints. Introduce a Lagrangian multipler vector A and form the Lagrangian function

Lz, A) = f(x)+ (X g(x)).

The first order optimality condition says there exists a A so that VoL =0 (VAL =g (x) =0
for obvious reasons).

Now consider a constrained optimization problem
maxzTAz s.t. ||lz]5=1,
xr

where A is a symmetric matrix. Write down the first-order optimality condition (0.5/12) and
what can you say about the solution (0.5/12; Hint: think of eigenvalue and eigenvectors)?

For those familiar with the second-order condition (https://en.wikipedia.org/wiki/Karush,
E27,80%93Kuhn’E2%80%93Tucker_conditions#Necessary_conditions), you're encouraged
to dig in and find the exact solution to the problem, but this is optional. This problem is closely
connected to the famous Rayleigh quotient (https://en.wikipedia.org/wiki/Rayleigh_
quotient).


https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Necessary_conditions
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Necessary_conditions
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://en.wikipedia.org/wiki/Rayleigh_quotient

Problem 4 (Deep learning problems are typically non-convex; 2/15) Convex analysis and
optimization has dominated classical machine learning (e.g., the famous support vector machines,
and lasso for variable selection), as with convexity most of the time we can focus on the modeling
part and worry little about the possibility of finding a bad local solution for the resulting optimization
problem. In deep learning, the optimization problems involved are almost always non-convex. Let’s
try to convince ourselves using two different arguments.

(a)

(b)

Consider a simplistic two-layer, single-hidden-node network with identity activation, i.e.,
f(z) = wow; z. For a training set {(z;, v;)} . let’s take the mean squared loss and set up
a supervised learning objective

i=1,..

1 N
& o (i = f(@i)?. (0-1)
i=1

L(wi,w2) =

Show that L(w;,ws) is non-convex by checking its Hessian. (Hint: recall how to check
convexity from Problem 3(b) above; also, when a 2 x 2 matrix is positive semidefinite, both
its trace and determinant are nonnegative. 1/15)

An alternative way to see L is non-convex is to prove by contradiction. Let’s assume that L is
indeed convex. In class, we recognized that for any (w1, w2), L(wi, w2) = L(—wi, —ws). Ifa
particular pair (w7}, w3) is a global minimizer of L, what can we say about (0, 0)? Then conclude
that L being convex will lead to trivial learning. (Hint: (0, 0) is a convex combination of (w7, w3)
and (—wj, —w3), i.e., lying on the line segment connecting (wj,ws) and (—wj, —w3).) (1/15)

(optional) What if f(x) consists of more than 2 layers? What if there are nonlinear activations,
e.g., ReLU? What if the loss we choose is not the mean squared loss, e.g., cross-entropy? Does
the argument still hold?



