
Fundamental Belief: Universal
Approximation Theorems

Ju Sun

Computer Science & Engineering

University of Minnesota, Twin Cities

September 21, 2020

1 / 45



Logistics

– HW 0 posted (due: midnight Sep 30)

– CSCI8980 lecture scribing (2 scribers per session, 2 reviewers per

session)

– Review of Scipy, Numpy, MSI resource, Colab + Project ideas (Sep

28 or Oct 05, TBD)

2 / 45



Typesetting and matrix calculus

– LATEX source of homework also posted in Canvas

Mind LATEX! Mind your math!

* Ten Signs a Claimed Mathematical Breakthrough is Wrong

* Paper Gestalt (50%/18%, 2009) =⇒ Deep Paper Gestalt

(50%/0.4%, 2018)

– Matrix Cookbook? Yes and No

http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

test test

3 / 45

https://www.scottaaronson.com/blog/?p=304
https://vision.cornell.edu/se3/wp-content/uploads/2014/09/gestalt.pdf
https://github.com/vt-vl-lab/paper-gestalt
http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html


Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

4 / 45



Recap I

biological neuron vs. artificial neuron

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
5 / 45



Recap II

Zoo of NN models in ML

– Linear regression

– Perception and

Logistic regression

– Softmax regression

– Multilayer perceptron

(feedforward NNs)

Also:

– Support vector machines (SVM)

– PCA (autoencoder)

– Matrix factorization

6 / 45



Recap III

Brief history of NNs:

– 1943: first NNs invented (McCulloch and Pitts)

– 1958 –1969: perceptron (Rosenblatt)

– 1969: Perceptrons (Minsky and Papert)—end of perceptron

– 1980’s–1990’s: Neocognitron, CNN, back-prop, SGD—we use today

– 1990’s–2010’s: SVMs, Adaboosting, decision trees and random forests

– 2010’s–now: DNNs and deep learning
7 / 45



Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

8 / 45



Supervised learning

General view:

– Gather training data

(x1,y1) , . . . , (xn,yn)

– Choose a family of

functions, e.g., H, so that

there is f ∈ H to ensure

yi ≈ f (xi) for all i

– Set up a loss function `

– Find an f ∈ H to

minimize the average loss

min
f∈H

1

n

n∑
i=1

` (yi, f (xi))

NN view:

– Gather training data

(x1,y1) , . . . , (xn,yn)

– Choose a NN with k neurons, so that

there is a group of weights, e.g.,

(w1, . . . ,wk, b1, . . . , bk), to ensure yi ≈
{NN (w1, . . . ,wk, b1, . . . , bk)} (xi) ∀i

– Set up a loss function `

– Find weights (w1, . . . ,wk, b1, . . . , bk) to

minimize the average loss

min
w′s,b′s

1

n

n∑
i=1

` [yi, {NN (w1, . . . ,wk, b1, . . . , bk)} (xi)]

Why should we trust NNs?

9 / 45



Function approximation

More accurate description of supervised learning

– Underlying true function: f0

– Training data: yi ≈ f0 (xi)

– Choose a family of functions

H, so that ∃f ∈ H and

f and f0 are close

– Approximation capacity: H matters (e.g., linear? quadratic?

sinusoids? etc)

– Optimization & Generalization: how to find the best f ∈ H
matters

We focus on approximation capacity now.
10 / 45



A word on notation

– k-layer NNs: with k layers of weights (along the deepest path)

– k-hidden-layer NNs: with k hidden layers of nodes (i.e.,

(k + 1)-layer NNs)

11 / 45



First trial

Think of single-output (i.e., Rn 7→ R) problems first

A single neuron

(f → σ: again, activation

always as σ)

H : {x 7→ σ (wᵀx+ b)}

– σ identity or linear: linear functions

– σ sign function sign (wᵀx+ b)

(perceptron): 0/1 function with

hyperplane threshold

– σ = 1
1+e−z :

{
x 7→ 1

1+e−(wᵀx+b)

}
– σ = max(0, z) (ReLU):

{x 7→ max(0,wᵀx+ b)}

12 / 45



Second trial

Think of single-output (i.e., Rn 7→ R) problems first

Add depth!

. . .

But make all hidden-nodes activations

identity or linear

σ (wᵀ
L (WL−1 (. . . (W 1x+ b1) + . . .) bL−1) + bL)

No better than a signle neuron!

Why?

13 / 45



Third trial

Think of single-output (i.e., Rn 7→ R) problems first

Add both depth & nonlinearity!

two-layer network, linear

activation at output

Surprising news:

universal approximation theorem

The 2-layer network can

approximate arbitrary

continuous functions arbitrarily

well, provided that the hidden

layer is sufficiently wide.

— so we don’t worry about limitation

in the capacity

14 / 45



Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

15 / 45



Why could UAT hold?

Visual “proof”

(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R→ R functions first, σ = 1
1+e−z

– Step 1: Build “step” functions

– Step 2: Build “bump” functions

– Step 3: Sum up bumps to approximate

16 / 45

http://neuralnetworksanddeeplearning.com/chap4.html


Step 1: build step functions

y =
1

1 + e−(wx+b)
=

1

1 + e−w(x−b/w)

– Larger w, sharper transition

– Transition around −b/w, written as s

17 / 45



Step 2: build bump functions

0.6 ∗ step(0.3)− 0.6 ∗ step (0.6)

Write h as the bump height

18 / 45



Step 3: sum up bumps to approximate

two bumps
five bumps

ultimate idea ... familiar?

Message: all R 7→ R functions can be “well” approximated using

2-layer NN’s 19 / 45



What about high-dimensional?

Similar story

– Step 1: Build “step” functions

– Step 2: Build “bump” functions

– Step 3: Build “tower” functions

– Step 4: Sum up bumps to approximate

http://neuralnetworksanddeeplearning.com/chap4.html

20 / 45

http://neuralnetworksanddeeplearning.com/chap4.html


Steps 1 & 2: build step and bump functions

step in x by setting large weight for x bump in x by diff of two steps in x

bump in y by diff of two steps in y
21 / 45



Step 3: build tower functions

sum up x, y bumps to obtain a

stair tower threshold to obtain a sharp tower

22 / 45



Step 4: sum up towers for approximation

sum up two towers sum up many towers

Message: all R2 7→ R functions can be “well” approximated using

3-layer NN’s Question: Possible using 2-layer NNs only?

23 / 45



General cases?

– What about Rn 7→ R functions?

The “step → (bump) → tower → tower array” construction

carries over

– What about Rn 7→ Rm functions?

Approximate each Rn 7→ R separately and then glue them

together

Message: All Rn 7→ Rm functions can be “well” approximated

using 2-layer NN’s

24 / 45



Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

25 / 45



[A] universal approximation theorem (UAT)

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Let σ : R→ R be a nonconstant, bounded, and continuous function. Let Im

denote the m-dimensional unit hypercube [0, 1]m. The space of real-valued

continuous functions on Im is denoted by C(Im). Then, given any ε > 0 and

any function f ∈ C(Im), there exist an integer N , real constants vi, bi ∈ R
and real vectors wi ∈ Rm for i = 1, . . . , N , such that we may define:

F (x) =
N∑
i=1

viσ
(
wT

i x+ bi
)
= vᵀσ (W ᵀx+ b)

as an approximate realization of the function f ; that is,

|F (x)− f(x)| < ε

for all x ∈ Im.

26 / 45



Rigorous proof?

The proof is very technical ... functional analysis

27 / 45



Thoughts on UAT

– σ : R→ R be a nonconstant, bounded, and continuous:

what about ReLU (leaky ReLU) or sign function (as in

perceptron)? We have many UAT theorem(s)

– Im denote the m-dimensional unit hypercube [0, 1]m: this

can replaced by any compact subset of Rm

– there exist an integer N : but how large N needs to be?

(later)

– The space of real-valued continuous functions on Im:

two examples to ponder on

– binary classification

– learn to solve square root

28 / 45



Learn to take square-root

Suppose we lived in a time square-root is not defined ...

– Training data:
{
xi, x

2
i

}
i
, where

xi ∈ R

– Forward: if x 7→ y, −x 7→ y

also

– To invert, what to output?

What if just throw in the

training data?
29 / 45



Thoughts

– Approximate continuous functions with vector outputs, i.e.,

Im → Rn? think of the component functions

– Map to [0, 1], {−1,+1}, [0,∞)? choose appropriate activation σ at

the output

F (x) = σ

(
N∑
i=1

viσ
(
wT

i x+ bi
))

... universality holds in modified form

– Get deeper? three-layer NN? change to matrix-vector notation for

convenience

F (x) = wᵀσ(W 2σ(W 1x+ b1) + b2) as
∑
k

wkgk (x)

use wk’s to linearly combine the same function

– For geeks: approximate both f and f ′? check out

[Hornik et al., 1990]

30 / 45



What about ReLU?

ReLU difference of ReLU’s

what happens when the slopes of the ReLU’s are changed?

How general σ can be? ... enough when σ not a polynomial

[Leshno et al., 1993]

31 / 45



Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

32 / 45



What’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 1D?

Assume the target f is 1-Lipschitz, i.e., |f(x)− f(y)| ≤ |x− y| ,∀ x, y ∈ R

For ε accuracy, need 1
ε

bumps

33 / 45



What’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D? Visual proof in 2D first

σ(wᵀx+ b) , σ sigmod

approach 2D step function when

making w large Credit: CMU 11-785

34 / 45



Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly ...

Image Credit: CMU 11-785
35 / 45



What’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D?

Image Credit: CMU 11-785

Assume the target f is 1-Lipschitz, i.e., |f(x)− f(y)| ≤ ‖x− y‖2 ,∀ x,y ∈ R2

For ε accuracy, need O
(
ε−2
)

bumps. What about the n-D case? O(ε−n).

36 / 45



What’s good about deep NNs?

– Learn Boolean functions (f : {+1,−1}n 7→ {+1,−1}): DNNs can

have #nodes linear in n, whereas 2-layer NN needs exponential nodes

(more in HW1)

– What general functions set deep and shallow NNs apart?

A family: compositional function [Poggio et al., 2017]

37 / 45



Compositional functions

Wn
m: class of n-variable functions with partial derivatives up to m-th order,

Wn,2
m ⊂Wn

m is the compositional subclass following binary tree structures

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound
38 / 45



Nonsmooth activation

A terse version of UAT

Shallow vs. deep

from [Poggio et al., 2017] 39 / 45



Width-bounded DNNs

Narrower than n+ 4 is fine

But no narrower than n− 1

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]

Deep vs. shallow still active area of research

40 / 45



Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems

Fundamental slogan of DL

Where there is a function, there is a NN...

and go ahead fitting it!

41 / 45



Outline

Recap

Why should we trust NNs?

Visual proof of UAT

UAT in rigorous form

From shallow to deep NNs

Suggested reading

42 / 45



Suggested reading

– Chap 4, Neural Networks and Deep Learning (online book)

http://neuralnetworksanddeeplearning.com/chap4.html

– Why and when can deep-but not shallow-networks avoid the curse of

dimensionality: A review. (by Poggio et al)

https://arxiv.org/abs/1611.00740

– Expressivity of Deep Neural Networks (by Ingo Gühring, Mones

Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759

43 / 45

http://neuralnetworksanddeeplearning.com/chap4.html
https://arxiv.org/abs/1611.00740
https://arxiv.org/abs/2007.04759


References i

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a

sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303–314.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer

feedforward networks. Neural Networks, 4(2):251–257.

[Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal

approximation of an unknown mapping and its derivatives using multilayer

feedforward networks. Neural Networks, 3(5):551–560.

[Kidger and Lyons, 2019] Kidger, P. and Lyons, T. (2019). Universal approximation

with deep narrow networks. arXiv:1905.08539.

[Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).

Multilayer feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Networks, 6(6):861–867.

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The

expressive power of neural networks: A view from the width. In Advances in

neural information processing systems, pages 6231–6239.

44 / 45



References ii

[Poggio et al., 2017] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q.

(2017). Why and when can deep-but not shallow-networks avoid the curse of

dimensionality: A review. International Journal of Automation and Computing,

14(5):503–519.

45 / 45


	Recap
	Why should we trust NNs?
	Visual proof of UAT
	UAT in rigorous form
	From shallow to deep NNs
	Suggested reading

