Fundamental Belief: Universal
Approximation Theorems

Ju Sun
Computer Science & Engineering

University of Minnesota, Twin Cities

September 21, 2020

1/45

Logistics

— HW 0 posted ()

HOMEWORK SET 0
CSC1 5980,/8980 Think Deep Learning (Fall 2020)

Due 11:59 pm, Sep 30 2020

Instruction Please typeset your homework in XTEX and submit it as a single PDF file in Canvas. No
late submission will be accepted. For each problem, your should acknowledge your collaborators if
any. For problems containing multiple subproblems, there are often close logic connections between
the subproblems. So always remember to build on previous ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. R is the set of real numbers. R" is the space of
n-dimensional real vectors, and similarly R™*" is the space of m x n real matrices. The dotted equal
sign = means defining.

Problem 1 (Chain rules, gradient and Hessian) Recall from calculus that for a multivariate

function f (@) mapping from R" to R, i.e., f : R" + R, the i-th partial derivative of f is defined as

% i.e., the univariate derivative with respect to the i-th variable while holding the other variables

constant. This generalizes naturally to the matrix case, where we consider f (X) with X € R™*".
e P N Af m - D B

— CSCI8980 lecture scribing (2 scribers per session, 2 reviewers per

session)

— Review of Scipy, Numpy, MSI resource, Colab + Project ideas (Sep
28 or Oct 05, TBD)

2/45

Typesetting and matrix calculus

— IBTEX source of homework also posted in Canvas
Mind IBTEX! Mind your math!
* Ten Signs a Claimed Mathematical Breakthrough is Wrong

Inspired by Sean Carroll's closely-related Alternative-Science Respectability
Checklist, without further ado I now offer the Ten Signs a Claimed Mathematical
Breakthrough is Wrong.

1. The authors don’t use TeX. This simple test (suggested by Dave Bacon)
already catches at least 60% of wrong mathematical breakthroughs. David
Deutsch and Lov Grover are among the only known false positives.

* Paper Gestalt (50%/18%, 2009) = Deep Paper Gestalt
(50%/0.4%, 2018)

Math: Sophisticated Plots: ROC, PR, and other Figures/Screenshots: lllustrative
performance plots convey a figures that express complex
make a paper look technical sense of thoroughness. algorithms in terms of 3¢ grade
and make the authors Standard deviation bars are visuals are always a must.
appear knowledgeable and particularly pleasing to a Screenshots of anecdotal results
“smart”. scientific eye. are also very effective.

— Matrix Cookbook? Yes and No
http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html 3/45

https://www.scottaaronson.com/blog/?p=304
https://vision.cornell.edu/se3/wp-content/uploads/2014/09/gestalt.pdf
https://github.com/vt-vl-lab/paper-gestalt
http://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

Recap

4/45

x0 wy
synapse
woTo

.)
axon from a neuron

impulses carried

toward cell body Ciod
branches celibody/ F(X wii+b
dendrites V] y;// of axon T 3 ;
\\ \/ wiz; +
v\\j/”; féj - output axon
{ axon
nucleus——=_g L aon_____\Me 7 activation

—e— function
% ‘{\\\ impulses carried

away from cell body
cell body

A cartoon drawing of a biological neuron (left) and its mathematical model (right)

biological neuron vs. artificial neuron

input layer
hidden layer 1 hidden layer 2

biological NN vs. artificial NN

Artificial NN: (over)-simplification on neuron & connection levels
5/45

Recap Il

Zoo of NN models in ML

Linear regression

— Perception and
Logistic regression

Softmax regression

Multilayer perceptron
(feedforward NNs)

— Support vector machines (SVM)
— PCA (autoencoder)

— Matrix factorization

6/ 45

Recap Il

FirstNN Symbolic Al New NNs /Algorithms
1% Al Winter 2"AI Winter Machine Learning
Birth of Al
?
1974 198741993 .
‘ 1980
1450 1970 1990 2010 2030
Perceptron h

First Computer
(entac)

y Expert System
Turing Test
Deep Learning, Data Science

Brief history of NNs:

— 1943: first NNs invented (McCulloch and Pitts)

— 1958 —1969: perceptron (Rosenblatt)

— 1969: Perceptrons (Minsky and Papert)—end of perceptron

— 1980's—-1990's: Neocognitron, CNN, back-prop, SGD—we use today
— 1990's—2010's: SVMs, Adaboosting, decision trees and random forests

— 2010's—now: DNNs and deep learning 745

Why should we trust NNs?

8/45

Supervised learning

General view: NN view:
— Gather training data — Gather training data
(ml’yl)v'--’(mnvyn) (mlvyl)v"'v(wn7yn)
— Choose a family of — Choose a NN with k& neurons, so that
functions, e.g., H, so that there is a group of weights, e.g.,
there is f € H to ensure (w1, ..., wy,bi, ..., by), to ensure vy, ~
y, ~ f(x;) for all ¢ INN (w1, ..., wg, by, ..., bi)} (i) Vi
— Set up a loss function ¢ — Set up a loss function ¢
— Findan f € H to — Find weights (w1, ..., wi, b1, ..., br) to
minimize the average loss minimize the average loss
bl W ()
f}gﬁnzf y,. f mm Zﬁ [y;, {NN (w1, ..., wr. by, ..., b))} (x4)]

Why should we trust NNs?

9/45

Function approximation

More accurate description of supervised learning

— Underlying true function: fj
— Training data: y; ~ fo (x;)

— Choose a family of functions
‘H, so that 3f € H and

f and fq are close

— Approximation capacity: #H matters (e.g., linear? quadratic?
sinusoids? etc)

— Optimization & Generalization: how to find the best f € H
matters

We focus on approximation capacity now.
10/45

A word on notation

Qutput layer
Hidden layer

Input layer

— k-layer NNs: with & layers of weights (along the deepest path)

— k-hidden-layer NNs: with % hidden layers of nodes (i.e.,
(k + 1)-layer NNs)

11/45

First trial

Think of single-output (i.e., R™ — R) problems first

A single neuron

— o identity or linear: linear functions

@ w — o sign function sign (wTx + b)
wozg

cell body
S wiwi+b

— -9
axon from a neuron

(perceptron): 0/1 function with

hyperplane threshold

output axon
activation

function _ . 1) 2 1
0 = 14+e—%" € | +e— (wTz+b)
- 0 = max(0, z) (ReLU):
(f — o again, activation {x — max(0,wTx +b)}

always as o)

H:{x—o(wx+b)}

12 /45

Second trial

Think of single-output (i.e., R™ — R) problems first

Add depth!

But make all hidden-nodes activations
identity or linear

g (’LUE (WLfl (.. (W1:13 + b1) + ..) bL71) + bL)

No better than a signle neuron!
Why?

13/45

Third trial

Think of single-output (i.e., R™ — R) problems first

Add both depth & nonlinearity!
Surprising news:

universal approximation theorem

input Layer Hidden Layer OutputLayer

The 2-layer network can
approximate arbitrary
continuous functions arbitrarily
well, provided that the hidden
layer is sufficiently wide.

two-layer network, linear
s — so we don't worry about limitation
activation at output W worry ut fimitatt
in the capacity

14 /45

Visual proof of UAT

15/ 45

Why could UAT hold?

Visual “proof”
(http://neuralnetworksanddeeplearning.com/chap4.html)

Think of R — R functions first, 0 = H%
(&

— Step 1: Build "step” functions
— Step 2: Build "bump” functions

— Step 3: Sum up bumps to approximate

16 /45

http://neuralnetworksanddeeplearning.com/chap4.html

Step 1: build step functions

1 Qutput from top hidden neuron

b;-?O

Lz { > 0

1 1
- 1+ e—(wz+Db) - 1+ e—w(z—b/w)

Y

— Larger w, sharper transition

— Transition around —b/w, written as s

17 /45

Step 2: build bump functions

RN ‘Weighted output from hidden layer

s; =0.30
a, : — - -~
N 37—060 e

T EL‘): -0.6

0.6 * step(0.3) — 0.6 * step (0.6)
Write h as the bump height

18 /45

Step 3: sum up bumps to approximate

five bumps
two bumps

0.40,

7 lo.go, =12

10.70,

0.90

ultimate idea ... familiar?

"N Y

1 2

Message: all R — R functions can be “well” approximated using

2-layer NN's 19/45

What about high-dimensional?

Similar story

— Step 1: Build “step” functions

— Step 2: Build “bump” functions

— Step 3: Build "tower” functions

— Step 4: Sum up bumps to approximate

http://neuralnetworksanddeeplearning.com/chap4.html

20/ 45

http://neuralnetworksanddeeplearning.com/chap4.html

Steps 1 & 2: build step and bump functions

Weighted output from hidden layer

, - 027) h=09
99 20 d 0.9
u - S
step in x by setting large weight for z bump in z by diff of two steps in x

Ty . Weightéd output from hidden layer
T | 0.20) h=0.6

0.6 |

-0.6

y +—0.74)

21/45

Step 3: build tower functions

0.40 h=0.51 weightgontput from idden faver 10.40 k=100 ‘ Output
0.60 z 100
10.60) \b=-15.0 |
N rlwv“-' \ ‘
, 10.30 ! : ~~4 1007, -
'0.70 . y=1 §
e N =
. 10.70
sum up x, y bumps to obtain a
stair tower threshold to obtain a sharp tower

22 /45

Step 4: sum up towers for approximation

(01 ‘ Many towers

- Weighted output
w = 0.7 k !

sum up two towers sum up many towers

Message: all R? — R functions can be “well” approximated using
3-layer NN's

23 /45

General cases?

— What about R"™ — R functions?
The “step — (bump) — tower — tower array” construction
carries over

— What about R" — R™ functions?
Approximate each R™ — R separately and then glue them
together

Message: All R — R"™ functions can be “well” approximated
using 2-layer NN's

24 /45

UAT in rigorous form

25 /45

[A] universal approximation theorem)

Theorem (UAT, [Cybenko, 1989, Hornik, 1991])

Leto:R — R be a function. Let I,,
denote the m-dimensional . The space of

is denoted by C(I,,). Then, given any e > 0 and
any function f € C(I,n), , real constants v;,b; € R
and real vectors w; € R™ fori =1,..., N, such that we may define:

N
F(z) = Zvia (w?m + bi> =v'c (WTxz +b)
i=1

as an approximate realization of the function f; that is,
|F(z) — f(z)| <e

for all x € I,,.

26 /45

Rigorous proof?

The proof is very technical ... functional analysis

O Riesz Representation: Every linear functional on C°([0, 1]¥) is
given by

f f(x)du(x), ne M
[0,1]%

where M = {finite signed regular Borel measures on [0, 1]¥} .

@ Lemma. Suppose for each y € M, we have
/ S(w-x+b)du(x) =0 Yw,b = pu=0. (0.1)
[0.1]x
Then Nets;(¢) is dense in C°([0, 1]%).

@ Lemma. ¢ continuous, sigmoidal = satisfies (0.1).

27 /45

Thoughts on UAT

— 0 : R — R be a nonconstant, bounded, and continuous:
what about ReLU (leaky ReLU) or sign function (as in
perceptron)? We have many UAT theorem(s)

— I, denote the m-dimensional unit hypercube [0, 1|™: this
can replaced by any compact subset of R™

— there exist an integer N: but how large N needs to be?
(later)

— The space of real-valued continuous functions on I,,,:
two examples to ponder on

— binary classification

— learn to solve square root

28 /45

Learn to take square-root

Forward Inverse

T () |y NN |—?

|

Suppose we lived in a time square-root is not defined ...

~ Training data: {x;, 27}, where
z;, €R

— Forward: if z +— y, —z+—y
also

— To invert, what to output?
What if just throw in the el
training data? ﬂ ‘ 1 ° '

Thoughts

— Approximate continuous functions with vector outputs, i.e.,
I, — R™? think of the component functions

- Map to [0,1], {—1,+1}, [0,00)? choose appropriate activation o at
the output

F(x)=0c (Z V0 (szm + bz)>

i=1
. universality holds in modified form

— Get deeper? three-layer NN? change to matrix-vector notation for
convenience

F(z)=wTo(Woo(Wix +by) +by) as Zwkgk

use wg's to linearly combine the same function

— For geeks: approximate both f and f’? check out
[Hornik et al., 1990|

30,45

What about RelLU?

RelLU difference of ReLU’s
what happens when the slopes of the RelLU's are changed?

How general o can be? ... enough when ¢ not a polynomial
[Leshno et al., 1993]

31/45

From shallow to deep NNs

32/45

What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 1D?

5,=0.30

_w, =06

5, = 0.60
; Wy =-0.6

Assume the target f is 1-Lipschitz, i.e., [f(z) — f(y)| < |z —y|,Vz,y €R

33/45

What'’s bad about shallow NNs?

From UAT, "“... there exist an interger N, ...”, but how large?

What happens in 2D7? Visual proof in 2D first

o(wTx +b) , o sigmod
approach 2D step function when
making w large Credit: CMU 11-785

34 /45

Visual proof for 2D functions

Keep increasing the number of step functions that are distributed evenly ...

i |«
‘ '/

Image Credit: CMU 11-785 35/45

What'’s bad about shallow NNs?

From UAT, “... there exist an interger N, ...”, but how large?

What happens in 2D?

Image Credit: CMU 11-785

Assume the target f is 1-Lipschitz, i.e., |f(z) — f(y)| < |z — y|,,V =,y € R?

For = accuracy, need O (£ 7) bumps. What about the n-D case? O(c).

36 /45

What’s good about deep NNs?

— Learn Boolean functions (f : {+1,—1}" + {+1,—1}): DNNs can
have #nodes linear in n, whereas 2-layer NN needs exponential nodes
(more in HW1)

— What general functions set deep and shallow NNs apart?

! I
XXy Xy Xy X Xg X X XXy Xy Xy X5 Xg X; Xg XXy Xy Xy Xy Xg X; Xy
)y
,Z P
Y
00...0 0..0 [
)) o
; 0,06 0.0 ‘
o
00 0:00/0 0x0
XX, Xy Xy Xg Xg X; Xg XXy Xy Xy Xy Xg X, Xg XX, Xy X, Xg Xg X; Xg

A family: compositional function [Poggio et al., 2017]
37/45

Compositional functions

flzy, - x8) = hg(hoy (hi1(x1, 22), hi2(x3,24)),
haa(his(xs, x6), hia(x7,28))) 4)

W class of n-variable functions with partial derivatives up to m-th order,
W2 c W is the compositional subclass following binary tree structures

Theorem 1. Let o : R — R be infinitely differentiable, and not a
polynomial. For f € W, the complexity of shallow networks that
provide accuracy at least € is

N = O(™™) and is the best possible. 5)

Theorem 2. For f € W2 consider a deep network with the
same compositonal architecture and with an activation function o :
R — R which is infinitely differentiable, and not a polynomial. The
complexity of the network to provide approximation with accuracy

at least € is
N =0O((n—1)e /™). (6)

from [Poggio et al., 2017] ; see Sec 4.2 of [Poggio et al., 2017] for lower bound
38/45

Nonsmooth activation

A terse version of UAT

Proposition 2. Letr o =: R — R be in C°, and not a polynomial.
Then shallow networks are dense in C°.

Shallow vs. deep

Theorem 4. Let f be a L-Lipshitz continuous function of n vari-
ables. Then, the complexity of a network which is a linear combi-
nation of ReLU providing an approximation with accuracy at least

- NS:O((%)%),

wheres that of a deep compositional architecture is
€N —2
Nd:O((n—l)(Z))

from [Poggio et al., 2017] 39/45

Width-bounded DNNs

Narrower than n + 4 is fine

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any
Lebesgue-integrable function f: R" — R and any € > (0, there exists a fully-connected ReLU
network of with width d,,, < n + 4, such that the function F,; represented by this network satisfies

f [f(2) — For(x)|dx < e. 3
B

But no narrower than n — 1

Theorem 3. For any continuous function f: [—1,1]" — R which is not constant along any direction,
there exists a universal € > 0 such that for any function F 4 represented by a fully-connected ReL.U
network with width d,,, < n — 1, the L' distance between [and F4 is at least €*:

f |f(z) = Fa(z)|dx = €". 5)
[~1,1]"

from [Lu et al., 2017]; see also [Kidger and Lyons, 2019]
Deep vs. shallow still active area of research

40 /45

Number one principle of DL

Fundamental theorem of DNNs

Universal approximation theorems

Fundamental slogan of DL

Where there is a function, there is a NN...
and go ahead fitting it!

41 /45

Suggested reading

42 /45

Suggested reading

— Chap 4, Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/chap4.html

— Why and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review. (by Poggio et al)
https://arxiv.org/abs/1611.00740

— Expressivity of Deep Neural Networks (by Ingo Giihring, Mones
Raslan, Gitta Kutyniok) https://arxiv.org/abs/2007.04759

43 /45

http://neuralnetworksanddeeplearning.com/chap4.html
https://arxiv.org/abs/1611.00740
https://arxiv.org/abs/2007.04759

References i

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4):303-314.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251-257.

[Hornik et al., 1990] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal
approximation of an unknown mapping and its derivatives using multilayer
feedforward networks. Neural Networks, 3(5):551-560.

[Kidger and Lyons, 2019] Kidger, P. and Lyons, T. (2019). Universal approximation
with deep narrow networks. arXiv:1905.08539.

[Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).
Multilayer feedforward networks with a nonpolynomial activation function can
approximate any function. Neural Networks, 6(6):861-867.

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The
expressive power of neural networks: A view from the width. In Advances in
neural information processing systems, pages 6231-6239.

44 /45

References

[Poggio et al., 2017] Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q.
(2017). Why and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review. International Journal of Automation and Computing,
14(5):503-5109.

45 /45

	Recap
	Why should we trust NNs?
	Visual proof of UAT
	UAT in rigorous form
	From shallow to deep NNs
	Suggested reading

