Think Deep Learning: Overview

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

September 14, 2020

Why deep learning?

Why first principles?

Our topics

Course logistics

What is Deep Learning (DL)?

DL is about...

- Deep neural networks (DNNs)
- Data for training DNNs (e.g., images, videos, text sequences)
- Methods for training DNNs (e.g., AdaGrad, ADAM, RMSProp, Dropout)
- Hardware platforms for traning DNNs (e.g., GPUs, TPUs, FPGAs)
- Software platforms for training DNNs (e.g., Tensorflow, PyTorch, MXNet)
- Applications! (e.g., vision, speech, NLP, imaging, physics, mathematics, finance)

DL leads to many things ...

Revolution: a great change in conditions, ways of working, beliefs, etc. that affects large numbers of people – from the Oxford Dictionary

Terrence Sejnowski (Salk Institute)

DL leads to hope

Academic breakthroughs

image classification

Go game (2017)

speech recognition credit: IBM

image generation credit: I. Goodfellow

DL leads to hope

Commercial breakthroughs ...

self-driving vehicles credit: wired.com

healthcare credit: Google AI

smart-home devices credit: Amazon

robotics credit: Cornell U.

Papers are produced at an overwhelming rate

Cornell University	the grantury accounted on support tran- the Simons Foundation and member institutions.	140000	afin+econ abio
arXiv.org > cs > cs.LG	Search Alt fields v Search Help (Advanced Search	120000	
Machine Learning		110000	physics+gr-qc+relin+mucl+quart.ph astro-ph
		§ 90000 §	- Np ³
Authors and titles for recent submissions		§ 80000	
Tae, 18 Jun 2019 May 2019		8 70000 ·	
Fit, 14 Jun 2019		3 60000 ·	
Thu, 13 Jun 2019 Weit 12 Jun 2019		a 50000	
1000 (458 wave 1 458)		40000	
showing 438 entries (All page, lawer) more [30000	
Fue, 18 Jun 2019		20000	
3] arXiv:1906.07153 [pdf, other]		10000	
Adversanal attacks on Copyright Detection Systems Pasas Sachapanink, NJ Istafri, Tom Octobation Subjects: Machine Learning (nLD); Crystopuphy and Security (nLCR); Machine Learning Intil ML)		0	****

image credit: arxiv.org

$400 \times 0.8 \times 52/140000 \approx 11.9\%$

DL Supremacy!?

Turing Award 2018 credit: ACM.org

Citation: For conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing. esp. for academic researchers ...

It's working amazingly well, but we don't understand why

First, a few words about deep learning to put our discussion into perspective. Neural networks have been around for decades, proposing a universal learning mechanism that could, in principle, fit to any learnable data source. In the food forwards destinction, then of perspective and the source of the perspective workshotd transmission.

DL leads to new sciences

chemistry

astronomy

social science

DL leads to money

- Funding
- Investment
- Job opportunities

Why deep learning?

Why first principles?

Our topics

Course logistics

TensorFlow PYTORCH

- Tuning and optimizing for a task require basic intuitions
- Historical lesson: model structures in data
- Current challenge: move toward trustworthiness
- Future world: navigate uncertainties

Structures are crucial

- Representation of images should ideally be translation-invariant.
- The 2012 breakthrough was based on modifying the classic DNNs setup to achieve translation-invariant.
- Similar success stories exist for sequences, graphs, 3D meshes.

Toward trustworthy AI

Super human-level vision?

"gibbon"

credit: openai.com

Adversarial examples

credit: ImageNet-C

Natural corruptions

- Trustworthiness: robustness, fairness, explainability, transparency
- We need to know first principles in order to improve and understand

- New types of data (e.g., 6-D tensors)
- New hardware (e.g., better GPU memory)
- New model pipelines (e.g., network of networks, differential programming)
- New applications
- New techniques replacing DL

Why deep learning?

Why first principles?

Our topics

Course logistics

Overview and history

```
Course overview (1)
```

Neural networks: old and new (1)

Fundamentals

Fundamental belief: universal approximation theorem (2) Numerical optimization with math: optimization with gradient descent and beyond (2) Numerical optimization without math: auto-differentiation and differential programming (2)

Structured data: images and sequences

Work with images: convolutional neural networks (2) Work with images: recognition, detection, segmentation (2) Work with sequences: recurrent neural networks (2)

Deterministic DNN

To train or not? scattering transforms (2)

Other settings: generative/unsupervised/reinforcement learning

Learning probability distributions: generative adversarial networks (2)

Learning representation without labels: dictionary learning and autoencoders (1)

Gaming time: deep reinforcement learning (2)

Python, Numpy, and Google Cloud/Colab Project ideas Intro to Pytorch Backpropagation and computational tricks Research ideas Why deep learning?

Why first principles?

Our topics

Course logistics

- Instructor: Professor Ju Sun Email: jusun@umn.edu
 Office hours: Tue/Thur 5–6pm
- TA: Hengkang Wang Email: wang9881@umn.edu
 Office hours: Wed 4:30–6:30pm
- Guest lecturers (TBA)

- Course Website:

https://sunju.org/teach/DL-Fall-2020/

All course materials will be posted on the course website.

 Communication: Canvas is the preferred and most efficient way of communication. All questions and discussions go to Canvas. Send emails in exceptional situations.

For bookworms...

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville. MIT Press, 2016. Online URL: https://www.deeplearningbook.org/ (comprehensive coverage of recent developments)
- Neural Networks and Deep Learning by Charu Aggarwal. Springer, 2018. UMN library online access (login required): Click here. (comprehensive coverage of recent developments)
- The Deep Learning Revolution by Terrence J. Sejnowski. MIT Press, 2018. UMN library online access (login required): Click here. (account of historic developments and related fields)
- Deep Learning with Python by François Chollet. Online URL: https://livebook.manning.com/book/deep-learning-with-python (hands-on deep learning using Keras with the Tensorflow backend)
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron (2ed). O'Reilly Media, 2019. UMN library online access (login required): Click here. (hands-on machine learning, including deep learning, using Scikit-Learn and Keras)
- Dive into Deep Learning by Zhang et al. Live book: https://dll.ai/. (comprehensive coverage & hand-ons)

- 60 % homework + 40 % course project
- 5/7 homework counts. Submission to Canvas. Writing in LATEX(to PDF) and programming in Python 3 notebook.

Acknowledge your collaborators for each problem!

- Project based on team of 2 or 3. 5% proposal + 10% mid-term presentation + 25% final report
- Publish a paper \implies A!

- 30 % homework + 40 % course project + 15% lecture teaching/scribing + 15% Short survey paper
- 3/7 homework counts. Submission to Canvas. Writing in LATEX(to PDF) and programming in Python 3 notebook.

Acknowledge your collaborators for each problem!

- Project based on team of 1 or 2. 5% proposal + 10% mid-term presentation + 25% final report
- Teach or scribe a 75 mins lecture session
- A short survey on topics not covered in class
- Publish a paper \implies A! test

Programming and Computing

Computing

- Local installation
- Google Colab: https://colab.research.google.com/
 (Yes, it's free)
- Google Cloud (\$100 credits per student) (similarly AWS and Azure)
- Minnesota Supercomputing Institute (MSI) (class account; details forthcoming)

Related deep learning courses at UMN

- Topics in Computational Vision: Deep networks (Prof. Daniel Kersten, Department of Psychology. Focused on connection with computational neuroscience and vision)
- Analytical Foundations of Deep Learning (Prof. Jarvis Haupt, Department of Electrical and Computer Engineering. Focused on mathematical foundations and theories)

To learn more computational methods for large-scale optimization

 IE5080: Optimization Models and Methods for Machine Learning (Prof. Zhaosong Lu, Department of Industrial and Systems Engineering (ISyE))

About basic **linear algebra** and **calculus** and **probability**, in **machine learning** context

If you struggle too much with it

- Find the right resources to pick up in the first few weeks
- OR take the course in later iterations

Thank you!

