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Logistics

– HW 2 out. Due: Oct 28

– Project grouping

some cool ID’s!
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Derivatives for numerical optimization

Credit: aria42.com

– gradient descent

– Newton’s method

– momentum methods

– quasi-Newton methods

– coordinate descent

– conjugate gradient methods

– trust-region methods

– Almost all methods entail low-order derivatives, i.e., gradient and/or

Hessian, to proceed.

* 1st order methods: use f (x) and ∇f (x)
* 2nd order methods: use f (x) and ∇f (x) and ∇2f (x)

– Numerical derivatives (i.e., numbers) needed for the iterations

This lecture: how to compute the numerical derivatives
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Four kinds of computing techniques

Credit: [Baydin et al., 2017]
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Outline

Analytic differentiation

Finite-difference approximation

Automatic differentiation

Differentiable programming

Suggested reading
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Analytic derivatives

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by hand:

– Chain rule (vector version) method

Let f : Rm → Rn and h : Rn → Rk, and f is differentiable at x and

z = h (y) is differentiable at y = f (x). Then, z = h ◦ f (x) : Rn → Rk

is differentiable at x, and

J [h◦f ] (x) = Jh (f (x))Jf (x) , or
∂z

∂x
=
∂z

∂y

∂y

∂x

When k = 1,

∇ [h ◦ f ] (x) = J>f (x)∇h (f (x)) .

– Taylor expansion method

Expand the perturbed function f (x+ δ) and then match it against Taylor

expansions to read off the gradient and/or Hessian:

f (x+ δ) = f (x) + 〈∇f (x) , δ〉+ o
(
‖δ‖2

)
f (x+ δ) = f (x) + 〈∇f (x) , δ〉+ 1

2

〈
δ,∇2f (x) δ

〉
+ o

(
‖δ‖22

)
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Symbolic differentiation

Idea: derive the analytic derivatives first, then make numerical substitution

To derive the analytic derivatives by software:

– Matlab (Symbolic Math Toolbox, diff)

– Python (SymPy, diff)

– Mathmatica (D)

Effective for functions with few variables only
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Limitation of analytic differentiation

What is the gradient and/or Hessian of

f (W ) =
∑
i

‖yi − σ (W kσ (W k−1σ . . . (W 1xi)))‖2F ?

Applying the chain rule is boring and error-prone. Performing Taylor

expansion is also tedious

Lesson we learn from tech history: leave boring jobs to computers
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Approximate the gradient

(Credit: numex-blog.com)

f ′ (x) = limδ→0
f(x+δ)−f(x)

δ
≈ f(x+δ)−f(x)

δ

with δ sufficiently small

For f (x) : Rn → R,

∂f

∂xi
≈ f (x+ δei)− f (x)

δ
(forward)

∂f

∂xi
≈ f (x)− f (x− δei)

δ
(backward)

∂f

∂xi
≈ f (x+ δei)− f (x− δei)

2δ
(central)

Similarly, to approximate the Jacobian for f (x) : Rn → Rm:

∂fj
∂xi
≈ fj (x+ δei)− fj (x)

δ
(one element each time)

∂f

∂xi
≈ f (x+ δei)− f (x)

δ
(one column each time)

Jf (x)p ≈
f (x+ δp)− f (x)

δ
(directional)

central themes can also be derived 10 / 38



Why central?

Stronger form of Taylor’s theorems

– 1st order: If f (x) : Rn → R is twice continuously differentiable,

f (x+ δ) = f (x) + 〈∇f (x) , δ〉+O
(
‖δ‖22

)
– 2nd order: If f (x) : Rn → R is three-times continuously differentiable,

f (x+ δ) = f (x) + 〈∇f (x) , δ〉+ 1
2

〈
δ,∇2f (x) δ

〉
+O

(
‖δ‖32

)
Why the central theme is better?

– Forward: by 1st-order Taylor expansion
1
δ
(f (x+ δei)− f (x)) = 1

δ

(
δ ∂f
∂xi

+O
(
δ2
))

= ∂f
∂xi

+O(δ)

– Central: by 2nd-order Taylor expansion 1
δ
(f (x+ δei)− f (x− δei)) =

1
2δ

(
δ ∂f
∂xi

+ 1
2
δ2 ∂

2f

∂x2i
+ δ ∂f

∂xi
− 1

2
δ2 ∂

2f

∂x2i
+O

(
δ3
))

= ∂f
∂xi

+O(δ2)

11 / 38



Approximate the Hessian

– Recall that for f (x) : Rn → R that is 2nd-order differentiable,
∂f
∂xi

(x) : Rn → R. So

∂f2

∂xj∂xi
(x) =

∂

∂xj

(
∂f

∂xi

)
(x) ≈

(
∂f
∂xi

)
(x+ δej)−

(
∂f
∂xi

)
(x)

δ

– We can also compute one row of Hessian each time by

∂

∂xj

(
∂f

∂x

)
(x) ≈

(
∂f
∂x

)
(x+ δej)−

(
∂f
∂x

)
(x)

δ
,

obtaining Ĥ, which might not be symmetric. Return 1
2

(
Ĥ + Ĥ

ᵀ)
instead

– Most times (e.g., in TRM, Newton-CG), only ∇2f (x)v for certain v’s

needed: (see, e.g., Manopt https://www.manopt.org/)

∇2f (x)v ≈ ∇f (x+ δv)−∇f (x)
δ
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A few words

– Can be used for sanity check of correctness of analytic gradient

– Finite-difference approximation of higher (i.e., ≥ 2)-order derivatives

combined with high-order iterative methods can be very efficient

(e.g., Manopt

https://www.manopt.org/tutorial.html#costdescription)

– Numerical stability can be an issue: truncation and round off s (finite

δ; accurate evaluation of the nominators)
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Four kinds of computing techniques

Credit: [Baydin et al., 2017]

Misnomer: should be automatic numerical differentiation
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Auto differentiation in 1D

Consider a univariate function fk ◦ fk−1 ◦ · · · ◦ f2 ◦ f1 (x) : R→ R. Write y0 = x,

y1 = f1 (x), y2 = f2 (y1), . . . , yk = f (yk−1), or in computational graph form:

Chain rule in Leibniz form:

∂f

∂x
=
∂yk
∂y0

=
∂yk
∂yk−1

∂yk−1

∂yk−2
· · · ∂y2

∂y1

∂y1
∂y0

How to evalute the product?

– From left to right in the chain: forward mode auto diff

– From right to left in the chain: backward/reverse mode auto diff

– Hybrid: mixed mode
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Forward mode in 1D

Chain rule:
df

dx
=
dyk
dy0

=

(
dyk
dyk−1

(
dyk−1

dyk−2

(
. . .

(
dy2
dy1

(
dy1
dy0

)))))

Compute df
dx

∣∣
x0

in one pass, from inner to outer most parenthesis:

Input: x0, initialization
dy0
dy0

∣∣∣
x0

= 1

for i = 1, . . . , k do

compute yi = fi
(
yi−1

)
compute

dyi
dy0

∣∣∣
x0

=
dyi

dyi−1

∣∣∣∣
yi−1

·
dyi−1
dy0

∣∣∣∣
x0

= f ′i
(
yi−1

) dyi−1
dy0

∣∣∣∣
x0

end for

Output:
dyk
dy0

∣∣∣
x0

Example: For f (x) =
(
x2 + 1

)2
, calculate ∇f (1) (whiteboard)
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Reverse mode in 1D

Chain rule:
df

dx
=

df

dy0
=

(((((
dyk
dyk−1

)
dyk−1

dyk−2

)
. . .

)
dy2
dy1

)
dy1
dy0

)
Compute df

dx

∣∣
x0

in two passes:

– Forward pass: calculate the yi’s sequentially

– Backward pass: calculate the dyk
dyi

= dyk
dyi+1

∂dyi+1

dyi
backward

Input: x0,
dyk
dyk

= 1

for i = 1, . . . , k do

compute yi = fi
(
yi−1

)
end for // forward pass

for i = k − 1, k − 2, . . . , 0 do

compute
dyk
dyi

∣∣∣
yi

=
dyk

dyi+1

∣∣∣∣
yi+1

·
dyi+1
dyi

∣∣∣∣
yi

= f ′i+1 (yi)
dyk

dyi+1

∣∣∣∣
yi+1

end for // backward pass

Output:
dyk
dy0

∣∣∣
x0

Example: For f (x) =
(
x2 + 1

)2
, calculate ∇f (1) (whiteboard) 18 / 38



Forward vs reverse modes

– forward mode AD: one forward pass, compute yi’s and dyi
dy0

’s together

– reverse mode AD: one forward pass to compute yi’s, one backward pass

to compute dyk
dyi

’s

Effectively, two different ways of grouping the multiplicative differential terms:

df

dx
=

df

dy0
=

(
dyk
dyk−1

(
dyk−1

dyk−2

(
. . .

(
dy2
dy1

(
dy1
dy0

)))))
i.e., starting from the root:

dy0
dy0
7→ dy1

dy0
7→ dy2

dy0
7→ · · · 7→ dyk

dy0

df

dx
=

df

dy0
=

(((((
dyk
dyk−1

)
dyk−1

dyk−2

)
. . .

)
dy2
dy1

)
dy1
dy0

)
i.e., starting from the leaf:

dyk
dyk
7→ dyk

dyk−1
7→ dyk

dyk−2
7→ · · · 7→ dyk

dy0

...mixed forward and reverse modes are indeed possible!
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Auto differentiation in high-D

Chain Rule Let f : Rm → Rn and h : Rn → Rk, and f is differentiable at x

and z = h (y) is differentiable at y = f (x). Then, z = h ◦ f (x) : Rn → Rk is

differentiable at x, and

J [h◦f ] (x) = Jh (f (x))Jf (x) , or
∂z

∂x
=
∂z

∂y

∂y

∂x
⇔ ∂zj

∂xi
=

m∑
`=1

∂zj
∂y`

∂y`
∂xi
∀ i, j

NB: this is a computational graph, not a NN

– Each node is a variable, as a function of

all incoming variables

– If node B a child of node A, ∂B
∂A

is the

rate of change in B wrt change in A

– Traveling along a path, rates of changes

should be multiplied

– Chain rule: summing up rates over all

connecting paths! (e.g., x2 to zj as

shown)

20 / 38



A multivariate example — forward mode

y =

(
sin

x1
x2

+
x1
x2
− ex2

)(
x1
x2
− ex2

)

– interested in ∂
∂x1

; for each variable

vi, write v̇i
.
= ∂vi

∂x1

– for each node, sum up partials

over all incoming edges, e.g.,

v̇4 = ∂v4
∂v1

v̇1 +
∂v4
∂v3

v̇3

– complexity:

O (#edges +#nodes)

– for f : Rn → Rm, make n forward

passes: O (n (#edges +#nodes))
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A multivariate example — reverse mode

– interested in ∂y
∂

; for each variable

vi, write vi
.
= ∂y

∂vi
(called adjoint

variable)

– for each node, sum up partials

over all outgoing edges, e.g.,

v4 = ∂v5
∂v4

v5 +
∂v6
∂v4

v6

– complexity:

O (#edges +#nodes)

– for f : Rn → Rm, make m

backward passes:

O (m (#edges +#nodes))

example from Ch 1

of [Griewank and Walther, 2008]
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Forward vs. reverse modes

For general function f : Rn → Rm, suppose there is no loop in the

computational graph, i.e., acyclic graph.

Define E: set of edges ; V : set of nodes

forward mode reverse mode

start from roots leaves

end with leaves roots

invariants v̇i
.
= ∂vi

∂x
(x—root of interest) vi

.
= ∂y

∂vi
(y—leaf of interest)

rule sum over incoming edges sum over outgoing edges

complexity O(n |E|+ n |V |) O(m |E|+m |V |)
better when m� n n� m
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Implementation trick—tensor abstraction

Tensors: multi-dimensional arrays

Each node in the computational graph can be a tensor (scalar, vector, matrix,

3-D tensor, ...)

f (W ) =

‖Y − σ (W kσ (W k−1σ . . . (W 1X)))‖2F

computational graph for DNN
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Implementation trick—tensor abstraction

computational graph for DNN

– neater computational graph

– tensor (i.e., vector) chain rules apply, often in tensor-free computation

* EX1: σ (V1) (whiteboard)

* EX2: V2k (whiteboard)
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Implementation trick—VJP

Interested in Jf (x) for f : Rn 7→ Rm. Implement vᵀJf (x) for any v ∈ Rm

– Why?

* set v = ei for i = 1, . . . ,m to recover rows of Jf (x)

* special structures in Jf (x) (e.g., sparsity) can be exploited

* often enough for application, e.g., calculate ∇ (g ◦ f) = (∇fᵀJf )
ᵀ

with known ∇f

– Why possible?

* vᵀJf (x) = Jvᵀf (x) so keep track of
∂
∂vi

(vᵀf) =
∑
k:outgoing

∂vk
∂vi

∂
∂vk

(vᵀf)

* implemeted in reverse-mode auto diff

https://pytorch.org/docs/stable/autograd.html
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Implementation trick—JVP

Interested in Jf (x) for f : Rn 7→ Rm. Implement Jf (x)p for any p ∈ Rn

– Why?

* set p = ei for i = 1, . . . , n to recover columns of Jf (x)

* special structures in Jf (x) (e.g., sparsity) can be exploited

* often enough for application

– Why possible?

* (1) initialize partial derivatives for the input nodes as Dpvn−1 = p1,

. . . , Dpv0 = pn. (2) apply chain rule:

∇xvi =
∑

j:incoming

∂vi
∂vj
∇xvj =⇒ Dpvi =

∑
j:incoming

∂vi
∂vj

Dpvj

* implemented in forward-mode auto diff
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Putting tricks together

Basis of implementation for: Tensorflow, Pytorch, Jax, etc

https://pytorch.org/docs/stable/autograd.html

Jax: https://github.com/google/jax http://videolectures.net/

deeplearning2017_johnson_automatic_differentiation/

Good to know:

– In practice, graphs are built automatically by software

– Higher-order derivatives can also be done, particularly Hessian-vector

product ∇2f (x)v (Check out Jax!)

– Auto-diff in Tensorflow and Pytorch are specialized to DNNs , whereas Jax

(in Python) is full fledged and more general

– General resources for autodiff: http://www.autodiff.org/,

[Griewank and Walther, 2008] 28 / 38
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Autodiff in Pytorch

Solve least squares f (x) = 1
2
‖y −Ax‖22 with ∇f (x) = −Aᵀ (y −Ax)

loss vs. iterate
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Autodiff in Pytorch

Train a shallow neural network

f (W ) =
∑
i

‖yi −W 2σ (W 1xi)‖22

where σ(z) = max (z, 0), i.e., ReLU

https://pytorch.org/tutorials/beginner/pytorch_with_

examples.html

– torch.mm

– torch.clamp

– torch.no grad()

Back propagation is reverse mode auto-differentiation!
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Example: image enhancement

– Each stage applies a parameterized function to the image, i.e.,

qwk ◦ · · · ◦ hw3 ◦ gw2 ◦ fw1 (X) (X is the camera raw)

– The parameterized functions may or may not be DNNs

– Each function may be analytic, or simply a chunk of codes dependent on

the parameters

– wi’s are the trainable parameters

Credit: https://people.csail.mit.edu/tzumao/gradient_halide/
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Example: image enhancement

– the trainable parameters are learned by gradient descent based on

auto-differentiation

– This is generalization of training DNNs with the classic feedforward

structure to training general parameterized functions, using

derivative-based methods

Credit: https://people.csail.mit.edu/tzumao/gradient_halide/
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Example: control a trebuchet

https://fluxml.ai/2019/03/05/dp-vs-rl.html

– Given wind speed and target distance, the DNN predicts the angle of

release and mass of counterweight

– Given the angle of release and mass of counterweight as initial conditions,

the ODE solver calculates the actual distance by iterative methods

– We perform auto-differentiation through the iterative ODE solver and the

DNN
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Differential programming

Interesting resources

– Notable implementations: Swift for Tensorflow

https://www.tensorflow.org/swift, and Zygote in Julia

https://github.com/FluxML/Zygote.jl

– Flux: machine learning package based on Zygote

https://fluxml.ai/

– Taichi: differentiable programming language tailored to 3D

computer graphics

https://github.com/taichi-dev/taichi
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Suggested reading

Autodiff in DNNs

– http://neuralnetworksanddeeplearning.com/chap2.html

– https://colah.github.io/posts/2015-08-Backprop/

– http://videolectures.net/deeplearning2017_johnson_automatic_

differentiation/

Yes you should understand backprop

– https://medium.com/@karpathy/

yes-you-should-understand-backprop-e2f06eab496b

Differentiable programming

– https://en.wikipedia.org/wiki/Differentiable_programming

– https://fluxml.ai/2019/02/07/

what-is-differentiable-programming.html

– https://fluxml.ai/2019/03/05/dp-vs-rl.html

37 / 38

http://neuralnetworksanddeeplearning.com/chap2.html
https://colah.github.io/posts/2015-08-Backprop/
http://videolectures.net/deeplearning2017_johnson_automatic_differentiation/
http://videolectures.net/deeplearning2017_johnson_automatic_differentiation/
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://en.wikipedia.org/wiki/Differentiable_programming
https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html
https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html
https://fluxml.ai/2019/03/05/dp-vs-rl.html


References i

[Baydin et al., 2017] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,

J. M. (2017). Automatic differentiation in machine learning: a survey. The

Journal of Machine Learning Research, 18(1):5595–5637.

[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). Evaluating

Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for

Industrial and Applied Mathematics.

38 / 38


	Analytic differentiation
	Finite-difference approximation
	Automatic differentiation
	Differentiable programming
	Suggested reading

