Basics of Numerical Optimization: Iterative Methods

Ju Sun
Computer Science & Engineering
University of Minnesota, Twin Cities

October 12, 2020
Logistics

- Project grouping
 * Proposal due: Oct 23
 * Proposal template: https://nips.cc/Conferences/2020/PaperInformation/StyleFiles

- Colab purchase
Find global minimum

$$\min_x f(x)$$

Grid search: incurs $O\left(\varepsilon^{-n}\right)$ cost

Smart search

1st-order necessary condition: Assume f is 1st-order differentiable at x_0. If x_0 is a local minimizer, then $\nabla f(x_0) = 0$.

x with $\nabla f(x) = 0$: 1st-order stationary point (1OSP)

2nd-order necessary condition: Assume $f(x)$ is 2-order differentiable at x_0. If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$.

x with $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$: 2nd-order stationary point (2OSP)
x with \(\nabla f(x) = 0 \): 1st-order stationary point (1OSP)

x with \(\nabla f(x) = 0 \) and \(\nabla^2 f(x) \succeq 0 \): 2nd-order stationary point (2OSP)

- **Analytic method**: find 1OSP’s using gradient first, then study them using Hessian — for simple functions! e.g.,

 \[
 f(x) = \|y - Ax\|_2^2, \text{ or } f(x, y) = x^2y^2 - x^3y + y^2 - 1
 \]

- **Iterative methods**: find 1OSP’s/2OSP’s by making consecutive small movements

This lecture: **iterative methods**
Iterative methods

Illustration of iterative methods on the contour/levelset plot (i.e., the function assumes the same value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

- **Line-search methods**: direction first, size second
- **Trust-region methods**: size first, direction second
Outline

Classic line-search methods

Advanced line-search methods
 Momentum methods
 Quasi-Newton methods
 Coordinate descent
 Conjugate gradient methods

Trust-region methods
Framework of line-search methods

A generic line search algorithm

Input: initialization \(x_0\), stopping criterion (SC), \(k = 1\)

1: while SC not satisfied do
2: choose a direction \(d_k\)
3: decide a step size \(t_k\)
4: make a step: \(x_k = x_{k-1} + t_k d_k\)
5: update counter: \(k = k + 1\)
6: end while

Four questions:

- How to choose direction \(d_k\)?
- How to choose step size \(t_k\)?
- Where to initialize?
- When to stop?
How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

for any fixed $t > 0$, using 1st order Taylor expansion

$$f(x_k + td_{k+1}) - f(x_k) \approx t \langle \nabla f(x_k), d_{k+1} \rangle$$

$$\min_{\|v\|_2=1} \langle \nabla f(x_k), v \rangle \implies v = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|_2}$$

Set $d_k = -\nabla f(x_k)$

gradient/steepest descent: $x_{k+1} = x_k - t \nabla f(x_k)$
Gradient descent

\[\min_x \ x^T A x + b^T x \]

typical zig-zag path

conditioning affects the path length

- remember direction curvature?
 \[\nu^T \nabla^2 f(x) \nu = \left. \frac{d^2}{dt^2} f(x + t\nu) \right|_{t=0} \]
- large curvature \(\leftrightarrow\) narrow valley
- directional curvatures encoded in the Hessian
How to choose a search direction?

We want to decrease the function value toward global minimum...

shortsighted answer: find a direction to decrease most rapidly

farsighted answer: find a direction based on both gradient and Hessian

for any fixed $t > 0$, using 2nd-order Taylor expansion

$$f(x_k + tv) - f(v) \approx t \langle \nabla f(x_k), v \rangle + \frac{1}{2} t^2 \langle v, \nabla^2 f(x_k) v \rangle$$

minimizing the right side

$$\implies v = -t^{-1} \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$$

Set $d_k = \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$

Newton’s method: $x_{k+1} = x_k - t \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$, t can set to be 1.
Why called Newton’s method?

Newton’s method: \(x_{k+1} = x_k - t \left[\nabla^2 f (x_k) \right]^{-1} \nabla f (x_k) \),

Recall Newton’s method for root-finding

\[
x_{k+1} = x_k - f' (x_n) f (x_n)
\]

Newton’s method for solving nonlinear system \(f (x) = 0 \)

\[
x_{k+1} = x_k - [J_f (x_n)]^\dagger f (x_n)
\]

Newton’s method for solving \(\nabla f (x) = 0 \)

\[
x_{k+1} = x_k - \left[\nabla^2 f (x_n) \right]^{-1} \nabla f (x_n)
\]
How to choose a search direction?

- **Nearsighted choice:** cost $O(n)$ per step

 Gradient/steepest descent:
 \[x_{k+1} = x_k - t \nabla f(x_k) \]

- **Farsighted choice:** cost $O(n^3)$ per step

 Newton’s method:
 \[x_{k+1} = x_k - t \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k), \]

Implication: The plain Newton never used for large-scale problems. More on this later ...
Problems with Newton’s method

Newton’s method: $x_{k+1} = x_k - t \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$,

for any fixed $t > 0$, using 2nd-order Taylor expansion

$$f(x_k + tv) - f(v) \approx t \left< \nabla f(x_k), v \right> + \frac{1}{2} t^2 \left< v, \nabla^2 f(x_k) v \right>$$

minimizing the right side $\implies v = -t^{-1} \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$

- $\nabla^2 f(x_k)$ may be non-invertible
- the minimum value is $-\frac{1}{2} \left< \nabla f(x_k), \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k) \right>$. If $\nabla^2 f(x_k)$ not positive definite, may be positive

solution: e.g., modify the Hessian $\nabla^2 f(x_k) + \tau I$ with τ sufficiently large
How to choose step size?

\[x_k = x_{k-1} + t_k d_k \]

- Naive choice: sufficiently small constant \(t \) for all \(k \)
- Robust and practical choice: back-tracking line search

Intuition for back-tracking line search:

- By Taylor’s theorem,
 \[f(x_k + td_k) = f(x_k) + t \langle \nabla f(x_k), d_k \rangle + o(t \|d_k\|^2) \] when \(t \) sufficiently small — \(t \langle \nabla f(x_k), d_k \rangle \) dictates the value decrease

- But we also want \(t \) large as possible to make rapid progress

- **idea**: find a large possible \(t^* \) to make sure
 \[f(x_k + t^* d_k) - f(x_k) \leq ct^* \langle \nabla f(x_k), d_k \rangle \] (**key condition**) for a chosen parameter \(c \in (0, 1) \), and no less

- **details**: start from \(t = 1 \). If the **key condition** not satisfied, \(t = \rho t \) for a chosen parameter \(\rho \in (0, 1) \).
A widely implemented strategy in numerical optimization packages

Back-tracking line search

Input: initial $t > 0$, $\rho \in (0, 1)$, $c \in (0, 1)$

1. while $f(x_k + td_k) - f(x_k) \geq ct \langle \nabla f(x_k), d_k \rangle$ do
2. $t = \rho t$
3. end while

Output: $t_k = t$.
Where to initialize?

convex vs. nonconvex functions

– **Convex**: most iterative methods converge to the global min no matter the initialization

– **Nonconvex**: initialization matters a lot. Common heuristics: random initialization, multiple independent runs

– **Nonconvex**: clever initialization is possible with certain assumptions on the data:

 https://sunju.org/research/nonconvex/

and sometimes random initialization works!
When to stop?

1st-order necessary condition: Assume f is 1st-order differentiable at x_0. If x_0 is a local minimizer, then $\nabla f(x_0) = 0$.

2nd-order necessary condition: Assume $f(x)$ is 2-order differentiable at x_0. If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$.

Fix some positive tolerance values $\varepsilon_g, \varepsilon_H, \varepsilon_f, \varepsilon_v$. Possibilities:

- $\|\nabla f(x_k)\|_2 \leq \varepsilon_g$, i.e., check 1st order cond
- $\|\nabla f(x_k)\|_2 \leq \varepsilon_g$ and $\lambda_{\min} (\nabla^2 f(x_k)) \geq -\varepsilon_H$, i.e., check 2nd order cond
- $|f(x_k) - f(x_{k-1})| \leq \varepsilon_f$
- $\|x_k - x_{k-1}\|_2 \leq \varepsilon_v$
Nonconvex optimization is hard

Nonconvex: Even computing (verifying!) a local minimizer is NP-hard!
(see, e.g., [Murty and Kabadi, 1987])

2nd order sufficient: \(\nabla f(x_0) = 0 \) and \(\nabla^2 f(x_0) \succ 0 \)
2nd order necessary: \(\nabla f(x_0) = 0 \) and \(\nabla^2 f(x_0) \succeq 0 \)

Cases in between: local shapes around SOSP determined by spectral properties of higher-order derivative tensors, calculating which is hard [Hillar and Lim, 2013]!
Outline

Classic line-search methods

Advanced line-search methods
 Momentum methods
 Quasi-Newton methods
 Coordinate descent
 Conjugate gradient methods

Trust-region methods
Outline

Classic line-search methods

Advanced line-search methods

- Momentum methods
- Quasi-Newton methods
- Coordinate descent
- Conjugate gradient methods

Trust-region methods
Why momentum?

- GD is cheap ($O(n)$ per step) but overall convergence sensitive to conditioning
- Newton’s convergence is not sensitive to conditioning but expensive ($O(n^3)$ per step)

A cheap way to achieve faster convergence? Answer: using historic information
Heavy ball method

In physics, a heavy object has a large inertia/momentum — resistance to change of velocity.

\[x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}) \]

due to Polyak

Credit: Princeton ELE522

History helps to smooth out the zig-zag path!
Nesterov’s accelerated gradient methods

Another version, due to Y. Nesterov

\[x_{k+1} = x_k + \beta_k (x_k - x_{k-1}) - \alpha_k \nabla f (x_k + \beta_k (x_k - x_{k-1})) \]

Credit: Stanford CS231N

For more info, see Chap 10 of [Beck, 2017] and Chap 2 of [Nesterov, 2018].
Classic line-search methods

Advanced line-search methods

Momentum methods

Quasi-Newton methods

Coordinate descent

Conjugate gradient methods

Trust-region methods
Quasi-Newton methods

quasi-: seemingly; apparently but not really.

Newton’s method: cost $O(n^2)$ storage and $O(n^3)$ computation per step

\[
x_{k+1} = x_k - t \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)
\]

Idea: approximate $\nabla^2 f(x_k)$ or $\left[\nabla^2 f(x_k) \right]^{-1}$ to allow efficient storage and computation — **Quasi-Newton Methods**

Choose H_k to approximate $\nabla^2 f(x_k)$ so that

- avoid calculation of second derivatives
- simplify matrix inversion, i.e., computing the search direction
Quasi-Newton methods

given: starting point $x_0 \in \text{dom } f$, $H_0 > 0$

for $k = 0, 1, \ldots$

1. compute quasi-Newton direction $\Delta x_k = -H_k^{-1}\nabla f(x_k)$

2. determine step size t_k (e.g., by backtracking line search)

3. compute $x_{k+1} = x_k + t_k \Delta x_k$

4. compute H_{k+1}

- Different variants differ on how to compute H_{k+1}

- Normally H_k^{-1} or its factorized version stored to simplify calculation of Δx_k

Credit: UCLA ECE236C
BFGS method

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

BFGS update

\[H_{k+1} = H_k + \frac{yy^T}{y^Ts} - \frac{H_kss^T H_k}{s^TH_k s} \]

where

\[s = x_{k+1} - x_k, \quad y = \nabla f(x_{k+1}) - \nabla f(x_k) \]

Inverse update

\[H_{k+1}^{-1} = \left(I - \frac{sy^T}{y^Ts} \right) H_k^{-1} \left(I - \frac{ys^T}{y^Ts} \right) + \frac{ss^T}{y^Ts} \]

Cost of update: \(O(n^2) \) (vs. \(O(n^3) \) in Newton’s method), storage: \(O(n^2) \) To derive the update equations, three conditions are imposed:

– secant condition: \(H_{k+1} s = y \) (think of 1st Taylor expansion to \(\nabla f \))
– Curvature condition: \(s_k^T y_k > 0 \) to ensure that \(H_{k+1} \succ 0 \) if \(H_k \succ 0 \)
– \(H_{k+1} \) and \(H_k \) are close in an appropriate sense

See Chap 6 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C
Limited-memory BFGS (L-BFGS)

Limited-memory BFGS (L-BFGS): do not store H_k^{-1} explicitly

- instead we store up to m (e.g., $m = 30$) values of

$$s_j = x_{j+1} - x_j, \quad y_j = \nabla f(x_{j+1}) - \nabla f(x_j)$$

- we evaluate $\Delta x_k = H_k^{-1}\nabla f(x_k)$ recursively, using

$$H_{j+1}^{-1} = \left(I - \frac{s_j y_j^T}{y_j^T s_j} \right) H_j^{-1} \left(I - \frac{y_j s_j^T}{y_j^T s_j} \right) + \frac{s_j s_j^T}{y_j^T s_j}$$

for $j = k - 1, \ldots, k - m$, assuming, for example, $H_{k-m} = I$

- an alternative is to restart after m iterations

Cost of update: $O(mn)$ (vs. $O(n^2)$ in BFGS), storage: $O(mn)$ (vs. $O(n^2)$ in BFGS) — linear in dimension n! recall the cost of GD?

See Chap 7 of [Nocedal and Wright, 2006] Credit: UCLA ECE236C
Outline

- Classic line-search methods
- Advanced line-search methods
 - Momentum methods
 - Quasi-Newton methods
 - Coordinate descent
 - Conjugate gradient methods
- Trust-region methods
Block coordinate descent

Consider a function $f(x_1, \ldots, x_p)$ with $x_1 \in \mathbb{R}^{n_1}, \ldots, x_p \in \mathbb{R}^{n_p}$

A generic block coordinate descent algorithm

Input: initialization $(x_{1,0}, \ldots, x_{p,0})$ (the 2nd subscript indexes iteration number)

1: for $k = 1, 2, \ldots$ do
2: Pick a block index $i \in \{1, \ldots, p\}$
3: Minimize wrt the chosen block:
 $$x_{i,k} = \arg \min_{\xi \in \mathbb{R}^{n_i}} f(x_{1,k-1}, \ldots, x_{i-1,k-1}, \xi, x_{i+1,k-1}, \ldots, x_{p,k-1})$$
4: Leave other blocks unchanged: $x_{j,k} = x_{j,k-1} \forall j \neq i$
5: end for

- Also called **alternating direction/minimization methods**
- When $n_1 = n_2 = \cdots = n_p = 1$, called **coordinate descent**
- Minimization in Line 3 can be **inexact**: e.g.,
 $$x_{i,k} = x_{i,k-1} - t_k \frac{\partial f}{\partial \xi} (x_{1,k-1}, \ldots, x_{i-1,k-1}, x_{i,k-1}, x_{i+1,k-1}, \ldots, x_{p,k-1})$$
- In Line 2, many different ways of picking an index, e.g., cyclic, randomized, weighted sampling, etc
Block coordinate descent: examples

Least-squares \(\min_{x} f(x) = \| y - Ax \|^2 \)

- \(\| y - Ax \|^2 = \| y - A_{-i}x_{-i} - a_i x_i \|^2 \)
- coordinate descent: \(\min_{\xi \in \mathbb{R}} \| y - A_{-i}x_{-i} - a_i \xi \|^2 \)

\[\iff x_{i,+} = \frac{\langle y - A_{-i}x_{-i}, a_i \rangle}{\| a_i \|^2} \]

\((A_{-i} \) is \(A \) with the \(i \)-th column removed; \(x_{-i} \) is \(x \) with the \(i \)-th coordinate removed\)

Matrix factorization \(\min_{A,B} \| Y - AB \|^2_F \)

- Two groups of variables, consider block coordinate descent
- Updates:

\[A_+ = Y B^\dagger, \]
\[B_+ = A^\dagger Y. \]

\((\cdot)^\dagger \) denotes the matrix pseudoinverse.\)
Why block coordinate descent?

– may work with constrained problems and non-differentiable problems (e.g., $\min_{A,B} \|Y - AB\|_F^2$, s.t. A orthogonal, Lasso: $\min_x \|y - Ax\|_2^2 + \lambda \|x\|_1$)

– may be faster than gradient descent or Newton (next)

– may be simple and cheap!

Some references:

– [Wright, 2015]

– Lecture notes by Prof. Ruoyu Sun
Outline

Classic line-search methods

Advanced line-search methods

Momentum methods
Quasi-Newton methods
Coordinate descent

Conjugate gradient methods

Trust-region methods
Conjugate direction methods

Solve linear equation \(y = Ax \iff \min_x \frac{1}{2} x^T Ax - b^T x \) with \(A \succeq 0 \)

apply coordinate descent...

diagonal \(A \): solve the problem in \(n \) steps

non-diagonal \(A \): does not solve the problem in \(n \) steps
Conjugate direction methods

Solve linear equation \(y = Ax \iff \min_x \frac{1}{2} x^T Ax - b^T x \) with \(A \succ 0 \)

Idea: define \(n \) “conjugate directions” \(\{p_1, \ldots, p_n\} \) so that \(p_i^T A p_j = 0 \) for all \(i \neq j \)—conjugate as generalization of orthogonal

- Write \(P = [p_1, \ldots, p_n] \). Can verify that \(P^T A P \) is diagonal and positive
- Write \(x = Ps \). Then \(\frac{1}{2} x^T Ax - b^T x = \frac{1}{2} s^T (P^T A P) s - (P^T b)^T s \) — quadratic with diagonal \(P^T A P \)
- Perform updates in the \(s \) space, but write the equivalent form in \(x \) space
- The \(i \)-the coordinate direction in the \(s \) space is \(p_i \) in the \(x \) space

In short, change of variable trick!
Conjugate gradient methods

Solve linear equation $y = Ax \iff \min x \frac{1}{2} x^T Ax - b^T x$ with $A \succ 0$

Idea: define n “conjugate directions” $\{p_1, \ldots, p_n\}$ so that $p_i^T A p_j = 0$ for all $i \neq j$—conjugate as generalization of orthogonal

Generally, many choices for $\{p_1, \ldots, p_n\}$.

Conjugate gradient methods: choice based on ideas from steepest descent

Algorithm 5.2 (CG).
- Given x_0
- Set $r_0 \leftarrow Ax_0 - b$, $p_0 \leftarrow -r_0$, $k \leftarrow 0$
- while $r_k \neq 0$

\[
\begin{align*}
\alpha_k &\leftarrow \frac{r_k^T r_k}{p_k^T A p_k} \tag{5.24a} \\
x_{k+1} &\leftarrow x_k + \alpha_k p_k \tag{5.24b} \\
r_{k+1} &\leftarrow r_k + \alpha_k A p_k \tag{5.24c} \\
\beta_{k+1} &\leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \tag{5.24d} \\
p_{k+1} &\leftarrow -r_{k+1} + \beta_{k+1} p_k \tag{5.24e} \\
k &\leftarrow k + 1 \tag{5.24f}
\end{align*}
\]

end (while)
Conjugate gradient methods

- Can be extended to general non-quadratic functions
- Often used to solve subproblems of other iterative methods, e.g., truncated Newton method, the trust-region subproblem (later)

See Chap 5 of [Nocedal and Wright, 2006]
Outline

Classic line-search methods

Advanced line-search methods
 Momentum methods
 Quasi-Newton methods
 Coordinate descent
 Conjugate gradient methods

Trust-region methods
Iterative methods

Illustration of iterative methods on the contour/levelset plot (i.e., the function assumes the same value on each curve)

Two questions: what direction to move, and how far to move

Two possibilities:

- **Line-search methods**: direction first, size second
- **Trust-region methods** (TRM): size first, direction second
Ideas behind TRM

Recall Taylor expansion \(f(x + d) \approx f(x) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} \langle d, \nabla^2 f(x_k) d \rangle \)

Start with \(x_0 \). Repeat the following:

- At \(x_k \), approximate \(f \) by the quadratic function (called model function dotted black in the left plot)
 \[
 m_k(d) = f(x_k) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} \langle d, B_k d \rangle
 \]
 i.e., \(m_k(d) \approx f(x_k + d) \), and \(B_k \) to approximate \(\nabla^2 f(x_k) \)

- Minimize \(m_k(d) \) within a trust region \(\{d : \|d\| \leq \Delta\} \), i.e., a norm ball (in red), to obtain \(d_k \)

- If the approximation is inaccurate, decrease the region size; if the approximation is sufficiently accurate, increase the region size.

- If the approximation is reasonably accurate, update the iterate \(x_{k+1} = x_k + d_k \).
Framework of trust-region methods

To measure approximation quality: \(\rho_k = \frac{f(x_k) - f(x_k + d_k)}{m_k(0) - m_k(d_k)} = \frac{\text{actual decrease}}{\text{model decrease}} \)

A generic trust-region algorithm

Input: \(x_0 \), radius cap \(\hat{\Delta} > 0 \), initial radius \(\Delta_0 \), acceptance ratio \(\eta \in [0, 1/4) \)

1: for \(k = 0, 1, \ldots \) do
2: \(d_k = \arg \min_d m_k(d) \), s.t. \(\|d\| \leq \Delta_k \) (TR Subproblem)
3: if \(\rho_k < 1/4 \) then
4: \(\Delta_{k+1} = \Delta_k / 4 \)
5: else
6: if \(\rho_k > 3/4 \) and \(\|d_k\| = \Delta_k \) then
7: \(\Delta_{k+1} = \min(2\Delta_k, \hat{\Delta}) \)
8: else
9: \(\Delta_{k+1} = \Delta_k \)
10: end if
11: end if
12: if \(\rho_k > \eta \) then
13: \(x_{k+1} = x_k + d_k \)
14: else
15: \(x_{k+1} = x_k \)
16: end if
17: end for
Recall the model function \(m_k(d) = f(x_k) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} \langle d, B_k d \rangle \)

- Take \(B_k = \nabla^2 f(x_k) \)
- Gradient descent: stop at \(\nabla f(x_k) = 0 \)
- Newton’s method: \(\left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k) \) may just stop at \(\nabla f(x_k) = 0 \) or be ill-defined
- Trust-region method: \(\min_d m_k(d) \quad \text{s.t.} \quad \|d\| \leq \Delta_k \)

When \(\nabla f(x_k) = 0 \),

\[
m_k(d) - f(x_k) = \frac{1}{2} \langle d, \nabla^2 f(x_k) d \rangle.
\]

If \(\nabla^2 f(x_k) \) has negative eigenvalues, i.e., there are negative directional curvatures, \(\frac{1}{2} \langle d, \nabla^2 f(x_k) d \rangle < 0 \) for certain choices of \(d \) (e.g., eigenvectors corresponding to the negative eigenvalues)

TRM can help to move away from “nice” saddle points!
To learn more about TRM

- A comprehensive reference [Conn et al., 2000]
- A closely-related alternative: cubic regularized second-order (CRSOM) method [Nesterov and Polyak, 2006, Agarwal et al., 2018]
- Example implementation of both TRM and CRSOM: Manopt (in Matlab) https://www.manopt.org/ (choosing the Euclidean manifold)

177–205.

tion. Springer New York.
