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Recap

We have talked about

– Basic DNNs (multi-layer feedforward)

– Universal approximation theorems

– Numerical optimization and training DNNs

Models and applications

– Unsupervised representation learning: autoencoders and variants

– DNNs for spatial data: CNNs

– DNNs for sequential data: RNNs, LSTM

– Generative models: variational Autoencoders and GAN

– Interactive models: reinforcement learning

involve modification and composition of the basic DNNs
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Feature engineering: old and new

Credit: [Elgendy, 2020]

Feature engineering: derive

features for efficient learning

Traditional learning pipeline

– feature extraction is “independent” of the learning models and tasks

– features are handcrafted and/or learned

Modern learning pipeline

– end-to-end DNN learning
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Unsupervised representation learning

Learning feature/representation without task information (e.g., labels)

(ICLR — International Conference on Learning Representation)

Why not jump into the end-to-end learning?

– Historical: Unsupervised representation learning key to the revival of deep

learning (i.e., layerwise pretraining, [Hinton et al., 2006, Hinton, 2006])

– Practical: Numerous advanced models built on top of the ideas in

unsupervised representation learning (e.g., encoder-decoder networks)
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Outline

PCA for linear data

Extensions of PCA for nonlinear data

Application examples

Suggested reading
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PCA: the geometric picture

Principal component analysis (PCA)

– Assume x1, . . . ,xn ∈ RD are zero-centered and write

X = [x1, . . . ,xm] ∈ RD×m

– X = USV ᵀ, where U spans the column space (i.e., range) of X

– Take top singular vectors B from U , and obtain BᵀX

PCA is effectively to identify the

best-fit subspace to x1, . . . ,xm

– B has orthonormal columns, i.e.,

BᵀB = I (BBᵀ 6= I when

D 6= d )

– sample to representation:

x 7→ x′
.
= Bᵀx (RD → Rd,

dimension reduction)

– representation to sample:

x′ 7→ x̂
.
= Bx′ (Rd → RD)

– x̂ = BBᵀx ≈ x

6 / 33



Autoencoders

story in digital communications ...

– Encoding:

x 7→ x′ = Bᵀx

– Decoding:

x′ 7→ BBᵀx = x̂

autoencoder: [Bourlard and Kamp, 1988,

Hinton and Zemel, 1994]

To find the basis B, solve (d ≤ D)

min
B∈RD×d

m∑
i=1

‖xi −BBᵀxi‖22
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Autoencoders

autoencoder:
To find the basis B, solve

min
B∈RD×d

m∑
i=1

‖xi −BBᵀxi‖22

So the autoencoder is performing PCA!

One can even relax the weight tying:

min
B∈RD×d,A∈Rd×D

m∑
i=1

‖xi −BAᵀxi‖22 ,

which finds a basis (not necessarily orthonormal) B that spans the top singular

space also [Baldi and Hornik, 1989], [Kawaguchi, 2016],

[Lu and Kawaguchi, 2017].

8 / 33



Factorization

To perform PCA,

min
B∈RD×d

m∑
i=1

‖xi −BBᵀxi‖22

min
B∈RD×d,A∈Rd×D

m∑
i=1

‖xi −BAᵀxi‖22 ,

But: the basis B and the representations/codes zi’s are all we care about

Factorization: (or autoencoder without encoder)

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22 .

All three formulations will find three different B’s that span the same principal

subspace [Tan and Mayrovouniotis, 1995, Li et al., 2020b, Li et al., 2020a,

Valavi et al., 2020]. They’re all doing PCA!
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Sparse coding

Factorization: (or autoencoder without encoder)

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22 .

What happens when we allow d ≥ D? Underdetermined even if B is known.

Sparse coding: assuming zi’s are sparse and d ≥ D

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22 + λ

m∑
i=1

Ω (zi)

where Ω promotes sparsity, e.g., Ω = ‖·‖1.
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More on sparse coding

also known as (sparse) dictionary learning [Olshausen and Field, 1996,

Mairal, 2014, Sun et al., 2017, Bai et al., 2018, Qu et al., 2019]
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Quick summary of the linear models

PCA is effectively to identify

the best-fit subspace to

x1, . . . ,xm

– B from U of X = USV ᵀ

– autoencoder:

minB∈RD×d

∑m
i=1 ‖xi −BBᵀxi‖22

– autoencoder:

minB∈RD×d,A∈Rd×D

∑m
i=1 ‖xi −BAᵀxi‖22

– factorization:

minB∈RD×d,Z∈Rd×m

∑m
i=1 ‖xi −Bzi‖22

– when d ≥ D, sparse coding/dictionary

learning

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22 + λ

m∑
i=1

Ω (zi)

e.g., Ω = ‖·‖1
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What about nonlinear data?

– Manifold, but not mathematically (i.e., differential geomety sense) rigorous

– (No. 1?) Working hypothesis for high-dimensional data: practical

data lie (approximately) on union of low-dimensional “manifolds”. Why?

* data generating processes often controlled by very few parameters
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Manifold learning

Classic methods (mostly for visualization): .e.g.,

– ISOMAP [Tenenbaum, 2000]

– Locally-Linear Embedding [Roweis, 2000]

– Laplacian eigenmap [Belkin and Niyogi, 2001]

– t-distributed stochastic neighbor embedding

(t-SNE) [van der Maaten and Hinton, 2008]

Nonlinear dimension reduction and representation learning
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From autoencoders to deep autoencoders

min
B∈RD×d

m∑
i=1

‖xi −BBᵀxi‖22

min
B∈RD×d,A∈Rd×D

m∑
i=1

‖xi −BAᵀxi‖22

nonlinear generalization of the linear mappings:
deep autoencoders

min
V ,W

m∑
i=1

‖xi − gV ◦ fW (xi)‖22

simply Aᵀ → fW and B → gV

A side question: why not calculate “nonlinear basis”?
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Deep autoencoders

min
V ,W

m∑
i=1

‖xi − gV ◦ fW (xi)‖22

the landmark paper [Hinton, 2006] ... that introduced pretraining
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From factorization to deep factorization

factorization

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22

nonlinear generalization of the linear mappings:
deep factorization

min
V ,Z∈Rd×m

m∑
i=1

‖xi − gV (zi)‖22

simply B → gV

[Tan and Mayrovouniotis, 1995, Fan and Cheng, 2018, Bojanowski et al., 2017,

Park et al., 2019, Li et al., 2020b], also known as deep decoder.
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From sparse coding to deep sparse coding

– when d ≥ D, sparse coding/dictionary

learning

min
B∈RD×d,Z∈Rd×m

m∑
i=1

‖xi −Bzi‖22 + λ

m∑
i=1

Ω (zi)

e.g., Ω = ‖·‖1

nonlinear generalization of the linear mappings: (d ≥ D)

deep sparse coding/dictionary learning

min
V ,Z∈Rd×m

m∑
i=1

‖xi − gV (zi)‖22 + λ

m∑
i=1

Ω (zi)

min
V ,W

m∑
i=1

‖xi − gV ◦ fW (xi)‖22 +
m∑
i=1

Ω (fW (xi))

the 2nd also called sparse autoencoder [Ranzato et al., 2006].
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Quick summary of linear vs nonlinear models

linear models nonlinear models

autoencoder
minB

∑m
i=1 ` (xi,BBᵀxi)

minB,A

∑m
i=1 ` (xi,BAᵀxi)

minV ,W

∑m
i=1 ` (xi, gV ◦ fW (xi))

factorization minB,Z

∑m
i=1 ` (xi,Bzi) minV ,Z

∑m
i=1 ` (xi, gV (zi))

sparse coding
minB,Z

∑m
i=1 ` (xi,Bzi)

+λ
∑m

i=1 Ω (zi)

minV ,Z

∑m
i=1 ` (xi, gV (zi))

+λ
∑m

i=1 Ω (zi)

minV ,W

∑m
i=1 ` (xi, gV ◦ fW (xi))

+λ
∑m

i=1 Ω (fW (xi))

` can be general loss functions other than ‖·‖2
Ω promotes sparsity, e.g., Ω = ‖·‖1

20 / 33



Outline

PCA for linear data

Extensions of PCA for nonlinear data

Application examples

Suggested reading

21 / 33



Nonlinear dimension reduction

autoencoder vs. PCA vs. logistic PCA

[Hinton, 2006]
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Representation learning

Traditional learning pipeline

– feature extraction is “independent” of the learning models and tasks

– features are handcrafted and/or learned

Use the low-dimensional codes as features/representations

– task agnostic

– less overfitting

– semi-supervised (rich unlabeled data + little labeled data) learning
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Outlier detection

(Credit: towardsdatascience.com)

– idea: outliers don’t obey the manifold assumption — the reconstruction

error ` (xi, gV ◦ fW (xi)) is large after autoencoder training

– for effective detection, better use ` that penalizes large errors less harshly

than ‖·‖22, e.g., ` (xi, gV ◦ fW (xi)) = ‖xi − gV ◦ fW (xi)‖2
[Lai et al., 2019]
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Deep generative prior

– inverse problems: given f and y = f (x),

estimate x

– often ill-posed, i.e., y doesn’t contain

enough info for recovery

– regularized formulation:

min
x

` (y, f (x)) + λΩ (x)

where Ω contains extra info about x

Suppose x1, . . . ,xm come from the same manifold as x

– train a deep factorization model on x1, . . . ,xm:

minV ,Z

∑m
i=1 ` (xi, gV (zi))

– x ≈ gV (z) for a certain z so: minz ` (y, f ◦ gV (z)) . Some recent work

even uses random V , i.e., without training

[Ulyanov et al., 2018, Bora and Dimakis, 2017]
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To be covered later

– convolutional encoder-decoder networks (i.e., segmentation, image

processing, inverse problems)

– autoencoder sequence-to-sequence models (e.g., machine translation)

– variational autoencoders (generative models)
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Suggested reading

– Representation Learning: A Review and New Perspectives (Bengio, Y.,

Courville, A., and Vincent, P.) [Bengio et al., 2013]

– Chaps 13–15 of Deep Learning [Goodfellow et al., 2017].

– Rethink autoencoders: Robust manifold learning [Li et al., 2020b]
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