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We have talked about

— Basic DNNs (multi-layer feedforward)
— Universal approximation theorems

— Numerical optimization and training DNNs
Models and applications

— Unsupervised representation learning: autoencoders and variants
— DNNs for spatial data: CNNs

— DNNs for sequential data: RNNs, LSTM

— Generative models: variational Autoencoders and GAN

— Interactive models: reinforcement learning

involve modification and composition of the basic DNNs
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Feature engineering: old and new

Feature
+++ 2| extraction
@ algorithm

Credit: [Elgendy, 2020]

Feature engineering: derive

features for efficient learning

Traditional learning pipeline

EIE R g Feature Extraction Learning Models Decision

— feature extraction is “independent” of the learning models and tasks

— features are handcrafted and/or learned

Modern learning pipeline

Data  se— Feature Extraction & Learning Models m— Decision

— end-to-end DNN learning
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Unsupervised representation learning

Learning feature/representation without task information (e.g., labels)
(ICLR — International Conference on Learning Representation)

Why not jump into the end-to-end learning?

— Historical: Unsupervised representation learning key to the revival of deep
learning (i.e., layerwise pretraining, [Hinton et al., 2006, Hinton, 2006])
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Abstract

— Practical: Numerous advanced models built on top of the ideas in

unsupervised representation learning (e.g., encoder-decoder networks)
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PCA for linear data
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PCA: the geometric picture

Principal component analysis (PCA)

— Assume x1,...,z, € RP are zero-centered and write
X =[x1,...,@,] € RPX™
— X =USVT, where U spans the column space (i.e., range) of X

— Take top singular vectors B from U, and obtain BT X

— B has orthonormal columns, i.e.,
B™B =1 (BBT™ # I when
D#d)

— sample to representation:

x— ' = BTz (R” — RY,

dimension reduction)

PCA is effectivel dentify th — representation to sample:
is effectively to identify the 2 % = Bax' (Rd—>RD)

best-fit subspace to x1,..., @
- Z=BB'z~zx
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Autoencoders

story in digital communications ...

-
B . B

T
be — B ' x ~
communication channel decoder X

autoencoder: [Bourlard and Kamp, 1988,
Hinton and Zemel, 1994]

o _ o
o ‘Q&O
— Encoding: ‘ .

P encoder 1

z—x — B'a To find the basis B, solve (d < D)
— Decoding: . " 2
'~ BBx==z Bgéande”wi ~ BBl
- i=1
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Autoencoders

autoencoder: ) )
To find the basis B, solve

m

o 2
-0 . o Benﬂlai})ldeHmi — BBTx|,
. : . ° . i=1

® C ] ® So the autoencoder is performing PCA!

One can even relax the weight tying:

m

min Z |z; — BA x|,
i=1

BERUXd,AERdXU

which finds a basis (not necessarily orthonormal) B that spans the top singular
space also [Baldi and Hornik, 1989], [Kawaguchi, 2016],
[Lu and Kawaguchi, 2017].
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To perform PCA,

BeRDxd

m
min > ||lz; — BB ||}
=1

m
min Z |z; — BA x5,
1=1

B€RDXd,A€RdXD

But: the basis B and the representations/codes z;'s are all we care about

Factorization: (or autoencoder without encoder)

m
min Z ||x: — Bz;
axm &

2
- 2
BGRDXd,Z'

All three formulations will find three different B's that span the same principal
subspace [Tan and Mayrovouniotis, 1995, Li et al., 2020b, Li et al., 2020a,
Valavi et al., 2020]. They're all doing PCA!
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Factorization: (or autoencoder without encoder)

m
min ZHa:ifB 2.
i=1

BcRDxd,

What happens when we allow d > D? Underdetermined even if B is known.

Sparse coding: assuming z;'s are sparse and d > D

min D e — Bzil3 + 2> Q(z)
i=1 1=1

BERDXd,

where Q promotes sparsity, e.g., Q@ = |||, .

2)
Rrixl
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More on sparse coding

vens v | pature

Letter  Published: 13 June 1996

Emergence of simple-cell receptive
field properties by learning a sparse
code for natural images

Bruno A. Olshausen & David J. Field

Nature 381, 607-609(1996) | Cite this article
5409 Accesses | 2901 Citations 29 Altmetric | Metrics.

Abstract

THE receptive fields of simple cells in mammalian primary visual cortex

can be characterized as being spatially localized, oriented!~* and
i ales),

bandpass

denoising super resol. recognition

also known as (sparse) dictionary learning [Olshausen and Field, 1996,

Mairal, 2014, Sun et al., 2017, Bai et al., 2018, Qu et al., 2019]
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Extensions of PCA for nonlinear data
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Quick summary of the linear models

1 L‘yl R — BfromUof X =USVT

T — autoencoder:

mingcpoxa yory ||@i — BBTafng

— autoencoder:

. 2
. . . . MingcpDxd acpdxD 9 ey ||®s — BATx|
PCA is effectively to identify c Ae =t ?

the best-fit subspace to — factorization:

Mingeppxd gepdxm Yoy ||z — Bzil)

L1,...,Lm
— when d > D, sparse coding/dictionary
learning
m m
e ] . — 2 .
BGRDXI}},IH ;sz Bzi||; +/\;Q (21)

2
/ eg. 2=,
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What about nonlinear data?

— Manifold, but not mathematically (i.e., differential geomety sense) rigorous

— (No. 1?) Working hypothesis for high-dimensional data: practical
data lie (approximately) on union of low-dimensional “manifolds”. Why?

* data generating processes often controlled by very few parameters
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Manifold learning

Classic methods (mostly for visualization): .e.g.,
ISOMAP [Tenenbaum, 2000]
Locally-Linear Embedding [Roweis, 2000]

Laplacian eigenmap [Belkin and Niyogi, 2001]

t-distributed stochastic neighbor embedding
(t-SNE) [van der Maaten and Hinton, 2008]

Nonlinear dimension reduction and representation learning

~ RD er K
// = SN f
/ T AN /| — . .
Vs Y 9% N / . A .
/ SOAEK .« ® R .,
) \\ \\ 75 / . . L R
\ B ¢ —— * .
N/ g
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From autoencoders to deep autoencoders

m
min Z |lz: — BBHI:,;HS

BecRDxd

min ZHwZ BA x|}

BeLRDXd AcRAXD

deep autoencoders

m
) : 2
Inin E 1 llzi — gv o fur (2:)]l5
=

simply AT — fw and B — gv

A side question: why not calculate “nonlinear basis”?
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Deep autoencoders

m
) : 2
min E 1 lei — gv o fw (235
i

the landmark paper [Hinton, 2006] ... that introduced pretraining
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From factorization to deep factorization

t RP R?

¢ factorization
Bf
o o - . . m
— et e e min E llz; — Bz
oPC2 . . BERDX’i ZERCIXWL
. - . ’ i=1
B

deep factorization
]RU ]er N

p - m
g RN \ — : . . 1 R ; 3|12
( = /’/ R V,ZnelﬁgI}iXm ;:1: Hw’b gv (Zl)HQ

simply B — gv

[Tan and Mayrovouniotis, 1995, Fan and Cheng, 2018, Bojanowski et al., 2017,
Park et al., 2019, Li et al., 2020b], also known as deep decoder.
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From sparse coding to deep sparse coding

— when d > D, sparse coding/dictionary
learning

min Z”:UZ BzZHer/\ZQ (z1)
BERDX‘] ZEeRAXm £

1=1
/ 2
./'x eg. 2=,
X1 .

nonlinear generalization of the linear mappings: (d > D)

deep sparse coding/dictionary learning

m m

H P . 2
e, e @A)

RD

m

min Z”wz*CJVOJ‘W x; ||2+Zsz fw (1))

v,
=1

the 2nd also called sparse autoencoder [Ranzato et al., 2006].
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Quick summary of linear vs nonlinear models

linear models nonlinear models
ming >.*, ¢ (x;, BBTx;)

autoencoder ming.a S, (@, BATz,) miny,w Y% (@i, gv o fw (x:))
factorization ming .z y ., £ (xi, Bz;) miny,z .-, ¢ (xi, gv (zi))
miny z >." £ (xi, gv (24))
ming,z > .-, ¢ (xi, Bz;) FAT L Q(20)

sparse codin m . m
P & FAYT L Q(z0) miny,w > i, £ (i, gv o fw (x:))

A Q(fw ()

¢ can be general loss functions other than |||,

Q2 promotes sparsity, e.g., Q2 = [|-]|;
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Application examples
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Nonlinear dimension reduction

autoencoder vs. PCA vs. logistic PCA

A B

[Hinton, 2006]
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Representation learning

Traditional learning pipeline

DEIEW g Feature Extraction Learning Models Decision

— feature extraction is “independent” of the learning models and tasks

— features are handcrafted and/or learned
Use the low-dimensional codes as features/representations

— task agnostic
— less overfitting

— semi-supervised (rich unlabeled data + little labeled data) learning
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Outlier detection

(Credit: towardsdatascience.com)

b

— idea: outliers don't obey the manifold assumption — the reconstruction
error £ (xi,gv o fw (x;)) is large after autoencoder training
— for effective detection, better use ¢ that penalizes large errors less harshly
2
than [|-[|5, e.g., £ (i, gv o fw (i) = [l&i — gv o fw ()|,
[Lai et al., 2019]
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Deep generative prior

— inverse problems: given f and y = f (),

f estimate x
— often ill-posed, i.e., y doesn't contain
- For\yard y = fl(z) _
'y Physical enough info for recovery

System

— regularized formulation:

min £(y, f (z)) + A2 (x)

r—1
Inverse Problem f where €2 contains extra info about @

Suppose 1, ..., %, come from the same manifold as x

— train a deep factorization model on @1, ..., @m:

miny,z E;ilg(mugv (z4))
- & & gv (z) for a certain z so: min; £ (y, fo ). Some recent work
even uses random V/, i.e., without training

[Ulyanov et al., 2018, Bora and Dimakis, 2017]
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To be covered later

— convolutional encoder-decoder networks (i.e., segmentation, image
processing, inverse problems)

— autoencoder sequence-to-sequence models (e.g., machine translation)

— variational autoencoders (generative models)
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Suggested reading
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Suggested reading

— Representation Learning: A Review and New Perspectives (Bengio, Y.,
Courville, A., and Vincent, P.) [Bengio et al., 2013]

— Chaps 13-15 of Deep Learning [Goodfellow et al., 2017].

— Rethink autoencoders: Robust manifold learning [Li et al., 2020b]
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