
HOMEWORK SET 5
CSCI 5980/8980 Think Deep Learning (Fall 2020)

Due 11:59 pm, Dec 22 2020
Instruction Typesetting your submission in LATEX is now optional, and but you need to submit it
as a single PDF file in Canvas. No late submission will be accepted. For each problem, your should
acknowledge your collaborators if any. For problems containing multiple subproblems, there are
often close logic connections between the subproblems. So always remember to build on previous
ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting) means its i-th
row as a row vector, and aj (subscripting) means the j-the column as a column vector, and aij means
its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional real vectors, and
similarly Rm×n is the space of m× n real matrices. The dotted equal sign .= means defining.

Problem 1 (transfer learning; 4/12) In computer vision and natural language processing, large-
scale datasets are available and high-performing deep models that are already trained on these
datasets, called pretrained models, are readily usable. For example, in Pytorch, a list of pretrained
models on on renowned ImageNet dataset is available here https://pytorch.org/docs/stable/
torchvision/models.html. Since these datasets are large-scale and believed to sufficiently repre-
sent the domain distributions, the features learned tend to be shareable across tasks. For example,
in computer vision, when coming to a new image classification task, it is rare that people will train
a model from scratch. Instead, a pretrained model will be taken and only fine tuning of the model
on the new task will be performed.

The different possibilities of fine tuning have been explained in our class; this webpage pro-
vides an excellent summary https://cs231n.github.io/transfer-learning/. A Pytorch tu-
totial on implementing transfer learning for vision tasks can be found here https://pytorch.
org/tutorials/beginner/transfer_learning_tutorial.html. In this problem, we will perform
transfer learning for classification of pneumonia from chest x-rays.

(a) Read the instruction for this Kaggle competition https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia, download (you’ll need a kaggle account) and setup the dataset.
(1/12)

(b) Set up an appropriate transfer learning pipeline to perform the classification. Feel free to choose
pretrained models you like (or can fit into your resource constraint—large models can be more
powerful, but need powerful GPUs). You may want to play with different transfer learning
strategy, and think about the following factors: (1) do you want to freeze all or only some of
convolutional layers? (2) or do youwant tomake all trainable, but only iterate few steps? (3) or
may be borrowing the model is sufficient and training can be done from scratch? (Hint on the
training: the two classes are not balanced; it may be helpful to put different weights on the pos-
itive and negative samples—e.g., weighting theminority class slightly more than the dominant
class—when constructing the training objective; lots of PyTorch functions already implement
the weighting mechanism, e.g., the weight input in torch.nn.CrossEntropyLoss https:
//pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)(2/12)

(c) A “90%" test: you’ll get 1 point if your classification accuracy exceeds 90%. But make sure to
show all your work in (b) even if you don’t make it 90%. (1/12)

1

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://cs231n.github.io/transfer-learning/
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


Problem 2 (recurrent neural networks; 3/12) In this problem, we will play with simple senti-
ment analysis based on text. The dataset can be found here https://www.kaggle.com/kazanova/
sentiment140. This github site (https://github.com/bentrevett/pytorch-sentiment-analysis)
includes detailed tutorials on performing sentiment analysis using basic and advanced RNNmodels
in PyTorch on the classic IMDb dataset. Please go over the tutorials and feel free to adapt the codes
there.

(a) Read the instruction from the Kaggle website and load the data from the sentiment140 dataset.
We will use the text field to predict the target, i.e., polarity. The text field is not as clean as the
IMDb dataset, e.g., the “@ xxxx" part is probably not useful for sentiment analysis. Perform
data clean up when necessary. There is a single data file in the dataset. Please split it into 60%
training, 20% validation, and 20% test. (1/12)

(b) Design and train a sentiment analysis model on the data. Again, feel free to start from the
sentiment analysis tutorial mentioned above and adapt the models there (1.5/12).

(c) A “85%" test: you’ll get 0.5 point if your classification accuracy exceeds 85%. (0.5/12)

Problem 3 (generative models; 5/12) Finally, we’re here to generate new fashionable items!
In other words, we will train generative models based on the famous Fashion-MNIST dataset
https://github.com/zalandoresearch/fashion-mnist, which is available as a PyTorch stan-
dard dataset https://pytorch.org/docs/stable/torchvision/datasets.html#fashion-mnist.
There possibly are implementations of the following algorithms on the Internet; you can occasionally
consult these online resources when feeling uncertain, but your implementations must be your own
work and copying from online sources is also considered plagiarism.

(a) Train a GAN and generate 10 new items after the training. For the GAN, you can use either the
original form, or modified form based on other objective, e.g., W-GAN, or other modification.
(2/12)

(b) Modify the above implementation into a conditional GAN, with the class labels as input
augmentation to both the generator and discriminator. Repeat the training and generation,
and show at least 1 new item from each class and visually compare with the results from (a).
(1/12)

(c) Implement and train a variational autoencoder and similarly generate 10 random samples from
it. As is standard in VAE, let’s assume the approximate posterior q (z|x) and the conditional
p (x|z) take multivariate Gaussian form with diagonal covariance structure. Sec. 3 and
Appendix C of the original paper https://arxiv.org/abs/1312.6114 may help you to clear
up doubts. Make sure to implement the reparametrization trick so that auto differentiation
can be performed. (2/12)

2

https://www.kaggle.com/kazanova/sentiment140
https://www.kaggle.com/kazanova/sentiment140
https://github.com/bentrevett/pytorch-sentiment-analysis
https://github.com/zalandoresearch/fashion-mnist
https://pytorch.org/docs/stable/torchvision/datasets.html#fashion-mnist
https://arxiv.org/abs/1312.6114

