
HOMEWORK SET 4
CSCI 5980/8980 Think Deep Learning (Fall 2020)

Due 11:59 pm, Dec 12 2020
Instruction Typesetting your submission in LATEX is now optional, and but you need to submit it
as a single PDF file in Canvas. No late submission will be accepted. For each problem, your should
acknowledge your collaborators if any. For problems containing multiple subproblems, there are
often close logic connections between the subproblems. So always remember to build on previous
ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting) means its i-th
row as a row vector, and aj (subscripting) means the j-the column as a column vector, and aij means
its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional real vectors, and
similarly Rm×n is the space of m× n real matrices. The dotted equal sign .= means defining.

Problem 1 (Autoencoders, deep factorization, and deep sparse coding; 6/12)

(a) The geometric view of PCA says that PCA tries to fit a subspace to a collection of data points.
From a modeling perspective, this means PCA makes sense only when the data points lie
near a subspace. For example, if xi = Bzi + εi for all i, where B is a basis for a subspace
and εi’s represent small-magnitude noise, trying to find a basis for the subspace spanned by
B may make a lot of sense. What happens when a small fraction of the data points deviate
significantly from the subspace?
To investigate this, let’s generate an orthonormal subspace basis B ∈ R200×20 and 98 random
data points on the subspace as Bzi’s where each zi ∈ R20 is iid Gaussian. So this portion of
data is perfectly clean. Now let’s generate 2 points that are iid Gaussian in R200—these two
points will be far from the subspace B almost surely and they are “outliers". Now we have
100 data points and we collect them into a data matrix X ∈ R200×100. Please normalize the
100 data points so that they all have unit `2 norm now. Also, do NOT perform centering to the
points for the following steps.

• Perform PCA via SVD or eigen-decomposition on X (again, no centering step) and
numerically compare the subspace spanned by the top 20 singular vectors with B. Re-
member for two subspaces spanned by two bases B1 and B2, their distance can be
measured by ‖B1B†1 −B2B†2‖F . What do you observe? (1/12)

• Specializing the factorization formulation for PCA for our setting is

min
A∈R200×20,Z∈R20×100

100∑
i=1
‖xi −Azi‖22 . (1)

It’s equivalent to the above PCA we have done of course. Now let’s consider a slight
modified version:

min
A∈R200×20,Z∈R20×100

100∑
i=1
‖xi −Azi‖2 , (2)

i.e., sum of the `2 norm, but norm squared. Numerically solve this optimization problem
(choose whatever methods you’re comfortable with, and auto-differentiation is also

1



allowed: remember that PyTorch or TensorFlow can also be used to solve generic uncon-
strained optimization problems, not necessarily deep learning problems). Compare the
subspace obtained here with B. Do you get a better estimate than the plain PCA above?
(2/12)

(b) Read the Science paper Reducing the Dimensionality of Data with Neural Networks(https://
science.sciencemag.org/content/313/5786/504).

• Reproduce the first two rows of Fig 2(B), i.e., PCA and autoencoder on MNIST. You
should use exactly the same architecture as provided in Fig 1 (right). The original paper
uses layer-wise pretraining for initialization and conjugate-gradient for training. You
probably don’t need these; instead, you can choosemodern initialization and optimization
methods in PyTorch or TensorFlow. If you are unsure how to use PyTorch to build a
neural network and perform training, this tutorial will be helpful: https://pytorch.
org/tutorials/beginner/blitz/neural_networks_tutorial.html (2/12)

• Reproduce the plot in Fig 3, i.e., PCA and autoencoder for visualization in the two-
dimensional space. The autoencoder architecture is described in the caption of Fig 3.
Again, you don’t need to use the original initialization and training methods. (1/12)

Problem 2 (Correlation and template matching; 6/12) The word “convolutional" in convolu-
tional neural networks is a misnomer. Cross-correlation, which is a close relative of convolution
and commonly used in signal processing, is actually used. In this problem, we explore some basic
properties and applications of the correlation operation. We use the standard notation ? to denote
cross-correlation, as against ∗which is often used to denote convolution.

(a) For two vectors x ∈ Rn1 , y ∈ Rn2 , the cross-correlation x ? y is obtained as follows:

We fix the position of y, and shift x to the left until x and y only have one overlapped element
spatially, i.e., xn1 with y1 — that’s the starting point. We calculate the inner product of two
overlapped subvectors—in the beginning only two scalars actually. Then we repeatedly do
this: shift x to the right by one element and calculate the corresponding inner product of the
two overlapped subvectors (i.e., think of a sliding window). We end the process until x and
y overlap only at one element, i.e., x1 with yn2 . The cross-correlation x ? y is basically the
vector that collects all the inner product values we have obtained in the left-to-right order. It
is easy to see that x ? y ∈ Rn1+n2−1.
Question: Calculate [3, 2, 1] ? [4, 6, 3, 9]. (0.5/12) For general x, y, is it true that x ? y = y ? x?
If not, what relationship between x ? y and y ? x do you observe? (0.5/12)

(b) In convolutional neural networks, we have building blocks of the form w ? x, where w
represents a group of learnable weights, often called filter following the signal processing

2

https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html


convention. For simplicity, let’s assume w ∈ R3 and x ∈ R4. Show that w ? x can be written
equivalently as Cwx for a certain matrix Cw ∈ R6×4 and write down Cw explicitly in terms
of elements of w. (1/12)

(c) To apply reverse-mode auto differentiation, we need to specify ∂
∂w (w ? x), i.e., the associated

Jacobian. Assume again w ∈ R3 and x ∈ R4, can you derive the analytic form of the Jacobian?
(1/12; Hint: is it possible to write w ? x as Cxw for a certain Cx?)

(d) The 2D cross-correlation is a natural generalization of the 1D cross-correlation to matrices.

(image credit: https://arxiv.org/abs/1603.07285; check out
https://github.com/vdumoulin/conv_arithmetic to see the dynamic demonstration under the Full padding,
no strides setting. Note that padding zeros, as indicated as the additional dotted boxes, is equivalent to ignoring

the out-of-boundary elements.)

Compared to the 1D version, nowwe start from the top-left corner and end at the bottom-right
corner. We scan row by row and inner products are now taken between the overlapped
submatrices. All the inner product values are naturally organized into a matrix. In the
pictorial illustration above, we are considering X ?Y , where X ∈ R3×3 is the gray matrix, and
Y ∈ R5×5 is the blue matrix, the resulting green matrix X ? Y ∈ R7×7, where 7 = 3 + 5− 1.
Question: In Numpy, implement a 2D cross-correlation function. The function should take in
two general matrices Z1 ∈ Rn1×n2 and Z2 ∈ Rm1×m2 and return the resulting cross-correlation
matrix. To debug your implementation, please generate a couple of random cases and bench-
mark against the Scipy built-in function scipy.signal.correlate2d (remember to set mode =
’full’) https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.
html. (1/12)

(e) Most basic image processing algorithms are implemented as cross-correlation of a small fil-
ter X with the image of interest Y . Check out the examples at the bottom of the page https://
docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html. Use
their image ascent, let’s test your implementation of 2D cross-correlation. Try two filters

X1 =

 −3 0 3
−10 0 10
−3 0 3

 and X2 = Xᵀ
1 .

Let’s say they generate two resulting matrices G1 and G2. Calculate
√

G2
1 + G2

2, where the
operations are pointwise. Display your result (i.e., imshow as in the online example). Does
your result look alike the gradient magnitude plot, except for the image boundaries? (1/12)

3

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


(f) Another way of thinking about cross-correlation is template matching. Imagine that X is a
2D pattern of interest. During the cross-correlation process, the inner product measures the
agreement of the 2D pattern and local patches in Y . If the value is relatively large, very likely
we find a match. After we finish the cross-correlation calculation, we can spot the locations of
the largest values in the cross-correlation matrix as candidate matching locations. Study the
example here https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
correlate2d.html and compare the performance of your implementation with that of the
example using scipy.signal.correlate2d. (1/12)

4

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html

