
HOMEWORK SET 3
CSCI 5980/8980 Think Deep Learning (Fall 2020)

Due 11:59 pm, Nov 19 2020
Instruction Typesetting your submission in LATEX is now optional, and but you need to submit it
as a single PDF file in Canvas. No late submission will be accepted. For each problem, your should
acknowledge your collaborators if any. For problems containing multiple subproblems, there are
often close logic connections between the subproblems. So always remember to build on previous
ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g., A) for matrices. For a matrix A, ai (supscripting) means its i-th
row as a row vector, and aj (subscripting) means the j-the column as a column vector, and aij means
its (i, j)-th element. R is the set of real numbers. Rn is the space of n-dimensional real vectors, and
similarly Rm×n is the space ofm× n real matrices. The dotted equal sign .= means defining.

Problem 1 (Automatic differentiation—scalar version; 4/12) Consider the the following three-
variable function

f (x1, x2, x3) = 1
x3

(x1x2 sin x3 + ex1x2) . (1)

Review slides 20–22 of the Oct 19th lecture on automatic differentiation. We are using the same
notation as used in the slides.

(a) Draw the computational graph for this function. (1/12)

(b) List the detailed computational steps to compute the partial derivative ∂f
∂x2

at the point (1, 1.5, 2)
using the forward mode. Specifically, provide the numerical values of vi and v̇i for all i. For
numerical values, you only need to keep four digits after the decimal point. To help you get
started, let’s assume that x1, x2 and x3 are renamed into variables v−2, v−1 and v0. Then

v−2 = 1, v̇−2 = ∂v−2
∂x2

= 0, (2)

v−1 = 1.5, v̇−1 = ∂v−1
∂x2

= 1, (3)

v0 = 2, v̇0 = ∂v0
∂x2

= 0. (4)

Please continue and provide the values for all other nodes in your computational graph.
(1.5/12)

(c) List of detailed computational steps to compute the partial derivative ∂f
∂x2

at the point (1, 1.5, 2)
using the reverse mode. Specifically, provide the numerical values of vi and vi for all i. For
numerical values, you only need to keep four digits after the decimal point. (1.5/12)

Problem 2 (Automatic differentiation in DNNs; 4/12) In principle, we can perform the reverse-
mode auto-differentiation (aka back propagation) forDNNsusing scalar variables as above. If you’re
interested in this form, please refer to http://neuralnetworksanddeeplearning.com/chap2.html.

1

http://neuralnetworksanddeeplearning.com/chap2.html


But the scalar version is messy due to the many variables in typical DNNs. More importantly,
modern computing hardware and software environments are optimized for performing direct
matrix/tensor operations. So it makes perfect sense to perform auto-differentiation directly in
matrix/tensor notation. To illustrate the idea, let’s consider a three-layer neural network and the
following training objective

f (W1,W2,W3) .= 1
2 ‖Y −W3σ (W2σ (W1X))‖2F , (5)

where the activation σ is ReLU.

Figure 1: Computational graph of Eq. (5).

The computational graph is shown in Fig. 1. We briefly discussed this on Slides 24–28 in our
lecture on auto-differentiation. Let’s fix a random seed you like, and generateY ∈ R2×50, X ∈ R5×50,
W1 ∈ R4×5, W2 ∈ R3×4, and W3 ∈ R2×3 all as iid Gaussian. You should fix these matrices once
done.

(a) Suppose each node in the computational graph has two fields: .v holds the numerical value of
the variable itself, and .g holds the numerical value of the gradient of f with respect to the
current variable.
Recall there are two-stages in reverse-mode auto-differentiation: forward pass and backward
pass.

• Now that X.v,Y .v,W1.v,W2.v,W3.v are known, compute the numerical values of all
other variables (i.e., V1.v, V2.v, etc) in the computational graph. You only need to keep 4
digits after the decimal point. (0.5/12)

Now we start to work out the backward process. Obvious z.g = 1 as ∇zf = 1 (remember
f = z). Moreover, ∇Dz = D. So D.g = D.v. From this point onward, we start to see
the trouble of Jacobians as tensors. For example, V5 = W3V4 and so the Jacobian ∂V5

∂V4
is a

tensor as both V4 and V5 are matrices—direct implementation involves tensor-matrix product.
Fortunately, we can get around the mess by the crucial observation: by implementing chain-
rule for gradient, we only care about the result of the Jacobian-matrix product here, not the
Jacobian itself. Now if Vi 7→ Vj and we want to compute∇Vif given∇Vjf , it turns out

∇Vif = J ᵀ
Vi 7→Vj

(
∇Vjf

)
= ∇Vi

〈
Vj ,∇Vjf

〉
.

The last inner product form avoids the Jacobian tensor JVi 7→Vj entirely, and now we only need
to derive the gradient of matrix to scalar functions.

• For V5.g,

∇V5f = ∇V5 〈D,D.g〉 = ∇V5 〈Y − V5,D.g〉 = ∇V5 〈−Dg,V5〉 = −D.g.

2



• Y is given data and not optimization variable, so ∇Y f = 0 (In Tensorflow or Pytorch,
these variables do not require gradients so will be directly ignored for gradient calcula-
tion).

• For V4.g,

∇V4f = ∇V4 〈V5,V5.g〉 = ∇V4 〈W3V4,V5.g〉 = ∇V4 〈W
ᵀ
3 V5.g,V4〉 = W ᵀ

3 V5.g.

So V4.g = W3.v
ᵀV5.g.

Question: You should substitute and obtain the numerical values for the above quantities.
Now carry on the backward pass and obtain all the numerical values of gradients for all
variables. (2.5/12)

(b) Go through the tutorials below and learn how to call Pytorch autograd to compute numerical
gradients and read off the gradient values

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-
beginner-blitz-autograd-tutorial-py

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-
pytorch-with-examples.

Now use it to compute the values of W1.g, W2.g, and W3.g. Do they agree with your results
in part (a)? (1/12)

Problem 3 (Stochastic optimization methods for MNIST digital recognition; 4/12) In this
problem, we’re going to train a shallow neural network based on different stochastic gradient
descent (SGD) methods that we learned in the lecture. Neural networks modules and autograd are
allowed in this problem, but no built-in optimizers in Pytorch are allowed. I strongly recommended you
go through this tutorial

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-
pytorch-with-examples

to learn how to use Pytorch torch.nn.sequential to build simple sequential neural networks (this
example https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-
pytorch-with-examples) and to buildmore complex neural networks by subclassing torch.nn.Module
(this example https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-
pytorch-with-examples).

We will first load the MNIST dataset into your workspace as in previous homework sets.

(a) Design a 3-layer neural network model. You’re free to choose the architecture, i.e., number of
nodes, activation functions, convolutional layers if you’re comfortable with. Also, choose an
appropriate loss for your training objective. (0.5/12)

(b) Implement the Adagrad algorithm. You’re free to choose your hyperparameters (initialization,
batch size, learning rate, etc). Please include a plot of how the objective vs. the epoch. (0.5/12)

(c) Implement the RMSprob algorithm. Requirement is the same as (b). (0.5/12)

3

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples


(d) Implement the Adam algorithm. Requirement is the same as (b). The version covered in our
lecture is a reduced version of Algorithm 1 of the original paper (https://arxiv.org/pdf/
1412.6980.pdf) that also handles the initial instability. Please implement the original version.
(1.5/12)

(e) A “98%" test: MNIST is a relative easy classification task and the state-of-the-art learning
models can achieve near perfect recognition performance. If you get a ≥ 98% test accuracy for
any two of (b), (c), and (d), you get 1 point here. For this, so long as your network remains
3-layer, you are free to adjust your network architecture in (a) and/or adopt any strategy to
avoid overfitting. You may also compare the performance of your implementation with the
built-in (https://pytorch.org/docs/stable/optim.html), but the results you report must
be produced from your own implementation. (1/12)

4

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://pytorch.org/docs/stable/optim.html

