
HOMEWORK SET 0
CSCI 5980/8980 Think Deep Learning (Fall 2020)

Due 11:59 pm, Sep 30 2020
Instruction Please typeset your homework in LATEX and submit it as a single PDF file in Canvas. No
late submission will be accepted. For each problem, your should acknowledge your collaborators if
any. For problems containing multiple subproblems, there are often close logic connections between
the subproblems. So always remember to build on previous ones, rather than work from scratch.
Notation We will use small letters (e.g., u) for scalars, small boldface letters (e.g., a) for vectors,
and capital boldface letters (e.g.,A) for matrices. R is the set of real numbers. Rn is the space of
n-dimensional real vectors, and similarly Rm×n is the space ofm×n real matrices. The dotted equal
sign .= means defining.

Problem 1 (Chain rules, gradient and Hessian) Recall from calculus that for a multivariate
function f (x) mapping from Rn to R, i.e., f : Rn 7→ R, the i-th partial derivative of f is defined as
∂f
∂xi

, i.e., the univariate derivative with respect to the i-th variable while holding the other variables
constant. This generalizes naturally to the matrix case, where we consider f (X) withX ∈ Rm×n.
The (i, j)-th partial derivative of f (X) is then ∂f

∂Xij
. For either case, the gradient is the ordered

collection of the partial derivatives. A common convention is to order the partial derivatives into
the same shape as the input variable. So for f (x), the gradient∇f (x) ∈ Rn is

∇f (x) .=



∂f
∂x1...
∂f
∂xi...
∂f

∂xn


.

Similarly for f (X), the gradient ∇f (X) ∈ Rm×n is

∇f (X) .=



∂f
∂X11

. . . ∂f
∂X1j

. . . ∂f
∂X1n... ... ... ... ...

∂f
∂Xi1

. . . ∂f
∂Xij

. . . ∂f
∂Xin... ... ... ... ...

∂f
∂Xm1

. . . ∂f
∂Xmj

. . . ∂f
∂Xmn


.

Each of the ∂f
∂xi

(respectively ∂f
∂Xij

) is a real-valued function of x (respectivelyX) again. So we can
take the partial derivatives with respect to entries in x (respectivelyX) again to obtain the 2nd
order partial derivatives like

∂
(

∂f
∂xi

)
∂x`

,

which we often write neatly as
∂2f

∂x`∂xi
.
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For f (x), there are two indices (`, j) to index all the 2nd order partial derivatives, and so it is
convenient to form an n× nmatrix whose (`, j)-th entry is ∂2f

∂x`∂xi
to collect them. We shall write

this matrix compactly as
[

∂2f
∂x`∂xi

]
`,i
∈ Rn×n, and this is the Hessian for f (x):

∇2f (x) .=
[

∂2f

∂x`∂xi

]
`,i

.

Under very mild conditions, Hessian for f (x) is symmetric, that is, ∂2f
∂x`∂xi

= ∂2f
∂xi∂x`

for all i and `.
The Hessian for f (X) is more complicated. There are four indices to index all the 2nd order partial
derivatives, e.g., ∂2f

∂X`,k∂Xi,j
. So it is natural to use a 4-dimensional array (matrices are 2-dimensional

arrays) to collect them here, i.e., we need 4-D tensors. We will cover more about tensors when we
come to deep learning on images. In practice, one would never explicitly form the Hessian of f (X)
for computation. We will talk more about this in future lectures and homework sets on numerical
optimization.

Let y = f (u) be differentiable with respect to u and u = g (x) be differentiable with respect to x.
The univariate chain rule says

dy

dx
= dy

du

du

dx
.

This can be extended to the multivariate case. Let y = f (u1, . . . , uj , . . . , um) be differentiable and
u1, . . . , uj , . . . , um be differentiable functions of (x1, . . . , xi, . . . , xn). Then, the multivariate chain
rule says that

dy

dxi
=
∑

j

∂y

∂uj

∂uj

∂xi
∀ i.

We can also write the multivariate version in matrix notations. Write y = f (u) where u ∈ Rm, and
u as a differentiable function of x ∈ Rn. Then,

∇xf = [Ju (x)]ᵀ∇uf,

where Ju (x) ∈ Rm×n is the Jacobian matrix of uwith respect to x:

Ju (x) =
[
∂uj

∂xi

]
j,i
.

(a) Let p (x;β) = eβ
ᵀx

1+eβ
ᵀx . The log-likelihood for logistic regression with two classes is (assuming

N samples of the form (xi, yi))

f (β) =
N∑

i=1
[yi log p (xi;β) + (1− yi) log (1− p (xi;β))]

=
N∑

i=1

[
yiβ

ᵀxi − log
(
1 + eβ

ᵀxi

)]
.

Derive the gradient and Hessian of f (β). Please include your calculation details. (1/12)

(b) Let σ = tanh(x), i.e., the hyperbolic tangent function. Derive the gradient of the matrix-variable
function g (W ) = ‖y − σ (Wx)‖22, where σ is applied to the vectorWx elementwise. This is
regression based on a one-layer network. Please include your calculation details. (1/12)
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Problem 2 (Matrix norms, inner products, traces) Recall that for any vector v ∈ Rn, the `p norm
of v is defined as ‖v‖p

.= (
∑

i |vi|p)1/p. The cases when p = 1, 2,∞ are often used. When p = 2, it is
also called the Euclidean norm. Similar norms can be defined for matrices. Particularly, the direct
generalization of the vector Euclidean norm is the Frobenius norm defined as

‖M‖F
.=
√∑

ij

M2
ij

for a matrix M . On the other hand, the inner product of matrices is defined similarly to that
of vectors. For A,B of the same size, 〈A,B〉 .=

∑
ij AijBij . Obviously, 〈A,B〉 = 〈B,A〉 and

‖M‖F =
√
〈M ,M〉. A third notion of interest is the matrix trace, tr (M) =

∑
iMii, i.e., sum of the

diagonal entries, which is only defined for square matrices.
(a) Show that 〈A,B〉 = tr (AᵀB) and so ‖M‖F =

√
tr (MᵀM). (1/12)

(b) Show that tr (AᵀB) = tr (BᵀA). (1/12)
(c) Assume A and B have the same size. In general, ABᵀ and BᵀA have different sizes, but

tr (ABᵀ) = tr (BᵀA). Show it! (1/12)
(d) Show that tr (M1M2M3) = tr (M3M1M2) = tr (M2M3M1), assuming that the sizes ofM1,

M2 andM3 are compatible with all the matrix multiplications. This is known as the cyclic
property of matrix traces. (Hint: think of (c)) (1/12)

(e) For anymatricesA,B,C,D of compatible sizes, we always have 〈ACB,D〉 = 〈CB,AᵀD〉 =
〈AC,DBᵀ〉, i.e., we can always move the leading matrix of one side of the inner product
to the other side as leading matrix once transposed (if these matrices are complex-valued,
should be conjugate transposed), and similarly the trailingmatrix to the other side as trailing
matrix once transposed. Why? (Hint: think of the above results and also try to remember
this important property that will be useful for calculation later) (1/12)

(f) ForM , let’s perform a compact SVD (if not sure, check upWikipedia! https://en.wikipedia.
org/wiki/Singular_value_decomposition#Compact_SVD) to obtainM = UΣV ᵀ, so that
U and V are orthonormal (not necessarily square) matrices, i.e., UᵀU = I and V ᵀV = I .
Use the cyclic property of trace and that ‖M‖F =

√
tr (MᵀM) to show that

‖M‖F =

√√√√ r∑
i=1

σ2
i ,

assuming the rank ofM is r. Here σi’s are the singular values ofM . (1/12)

Problem 3 (Taylor expansion of multivariate functions) We learned Taylor’s theorem for single
variable functions in our first calculus course. For a function f that is twice-differentiable around x,

f (x+ δ) = f (x) + f ′ (x) δ + 1
2f
′′ (x) δ2 + o(|δ|2) as δ → 0,

i.e., the approximation error of the 2nd order Taylor expansion f (x) + f ′ (x) δ + 1
2f
′′ (x) δ2 is lower

order than |δ|2 when δ is sufficiently small. The result generalizes naturally to the multivariate case.
For f : Rn → R that is twice-differentiable around x,

f (x+ δ) = f (x) + [∇f (x)]ᵀ δ + 1
2δ

ᵀ∇2f (x) δ + o
(
‖δ‖22

)
.
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Similarly, for f : Rm×n → R that is twice-differentiable aroundX ,

f (X + ∆) = f (X) + tr ([∇f (X)]ᵀ ∆) + 1
2 tr

(
∆ᵀ∇2f (X) ∆

)
+ o

(
‖∆‖2F

)
.

Consider the one-layer network regression again: g (W ) = ‖y − σ (Wx)‖22 with σ (x) = tanh(x).
Let’s try to work out its 1st order Taylor expansion by direct expansion as follows.

• Show that σ ((W + ∆)x) = σ (Wx) +σ′ (Wx)� (∆x) + o(‖∆‖F ) when ∆→ 0. Here, both
σ and σ′ are applied elementwise, and � denotes the elementwise (Hadamard) product.
(1/12)

• So y−σ ((W + ∆)x) = (y − σ (Wx))−σ′ (Wx)�(∆x)−o (‖∆‖F )when∆→ 0. Substitute
this back into the square and use the identity ‖a+ b+ c‖22 = ‖a‖22 + ‖b‖22 + ‖c‖22 + 2aᵀb +
2aᵀc+ 2bᵀc to obtain the first-order approximation to g (W + ∆). Remember that any terms
lower order than ‖∆‖F are not interesting and we can always assume ∆ as small as needed.
(1/12)

• Substitute the result from Problem 1(b) into the 1st order Taylor expansion formula above
and compare it to the result obtained here. Are they equal or not? (0.5/12)

Problem 4 (Conditional probability and Bayes’ Rule) Let P (A | B) be the probability of event
A given event B. Bayes’ theorem states that

P (A | B) = P (B | A)P (A)
P (B) .

In general, for a partition {Ai} of the sample space,

P (Ai | B) = P (B | Ai)P (Ai)∑
i P (B | Ai)P (Ai)

.

(a) Suppose that women who drink alcohol often are 10 times more likely to develops a stomach
cancer than women who do not, while the corresponding risk for men is 20 (drinker v.s.
non-drinker). Statistical data show that 40% of women drink alcohol often. Now, a woman
has been diagnosed with the stomach cancer. But due to some privacy issues, it is impossible
for you to get other information about this woman. Based on the limited information, is it
possible to calculate the probability that she is a drinker? If yes, what is the probability? If no,
explain why and what extra information you will need.1 (1/12)

(b) Doctors apply a standardized test for a certain disease. If the patient has the disease, the test
shows a positive result with a 99% chance. However, with 2% probability a healthy patient
can have a positive test. Statistical data show that 1 out of 1000 in the population have the
disease. What is the probability for a patient with a positive test to be affected by the disease?
(0.5/12)

1All data and information in this question are made up. No medical studies/institutions have proven it.
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