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Why phase retrieval?

How people solve PR?
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Phase retrieval

Phase retrieval (PR): Given |F (x)|2, recover x

– F : Fourier transform. Without |·|2, a matter of F−1!

– recover x ⇐⇒ recover ei∠F(x)

– x: 1D (vector), 2D (matrix), or 3D (tensor) signal
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1D example: spectral factorization

In signal processing, control, and stochastic processes, etc: given an

autocorrelation sequence r ∈ R2n−1 and its Z transform R (z)

spectral factorization: given R(z), find X (z) so that

R (z) = αX (z)X
(
z−1
)

and X(z) has all roots inside the unit circle.

⇐⇒ find x ∈ Rn given r = x ? x

⇐⇒ find x ∈ Rn given F (r) = F (x ? x) = |F (x)|2

So: given |F (x)|2, recover x— 1D PR!

[Sayed and Kailath, 2001, Barmherzig and Sun, 2018]
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2D example: coherent diffraction imaging (CDI)

(Credit: [Shechtman et al., 2015])

Fraunhofer (far-field) approximation:

|f (x, y)|2 ≈ 1

λ2z2

∣∣∣Î ( x
λz
,
y

λz

)∣∣∣2 ,
where I (x, y) = f (x, y, 0) (complex-valued!).
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3D example: Bragg coherent diffraction imaging (BCDI)

single-reflection BCDI

(Credit: [Maddali et al., 2020])

multi-reflection BCDI

(Credit: [Newton, 2020])

modern tools for x-ray crystallography, with application in chemistry,

materials, medicine, etc
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“Nobel-level problem”

× 25

https://en.wikipedia.org/wiki/X-ray_crystallography#Nobel_Prizes_involving_X-ray_crystallography
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Possible at all?

Phase retrieval (PR): given |F (x)|2, recover x

F—oversampled Fourier transform

PR non-injective for 1D, but generically “injective” for 2D or

higher [Hayes, 1982, Bendory et al., 2017]

– M constraint: |F (X)|2 = Y

– S constraint: A (X) = 0
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A brief history of PR algorithms

– Before 70’s: error reduction

method [Gerchberg and Saxton, 1972]

– Around 80’s: hybrid input-output method [Fienup, 1982]

– Around 2000: connection to Douglas-Rachford method

identified [Bauschke et al., 2002]

– Later variants: RAAR [Luke, 2004], difference

map [Elser et al., 2007], see recent review [Luke et al., 2019]
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PR algorithms

– Standard: alternating projection methods

– Popular: Fienup’s hybrid input-output (HIO) and variants

– No guaranteed recovery (projection onto nonconvex sets)

– Often slow in practice, and sensitive to optimization parameters

Hybrid Input-Output (HIO) = Applying Douglas-Rachford

splitting to δM + δS—ADMM! [Wen et al., 2012]
13 / 51



Insights from randomness?

(Fourier) phase retrieval:

For a complex signal x ∈ Cn, given |Fx|2, recover x.

Generalized phase retrieval:

For a complex signal x ∈ Cn, given |Ax|2 where A contains

randomness, recover x.

coded-diffraction

CDI [Candès et al., 2015]
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Insights from the Gaussian case?

y = |a∗ix| for i = 1, . . . ,m where ai’s complex Gaussian vectors

– many beautiful mathematical

results [Chi et al., 2018, Fannjiang and Strohmer, 2020]

Example 1: a beautiful init + local descent result
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Insights from the Gaussian case?

y = |a∗ix| for i = 1, . . . ,m where ai’s complex Gaussian vectors

– many beautiful mathematical

results [Chi et al., 2018, Fannjiang and Strohmer, 2020]

Example 2: my own results

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(y2k − |a∗kz|2)2.

Theorem ([Sun et al., 2016])

When ak’s generic and m large, with high probability

all local minimizers are global, all saddles are nice.
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I was happy until ...
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Take-home messages

James R Fienup

(U. Rochester)

I find it interesting people have tried to an-

alyze Gaussian phase retrieval. —Fineup

Beautiful mathematical results gathered so far

[Chi et al., 2018, Fannjiang and Strohmer, 2020]

But we made little progress in solving Fourier PR
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PR is about Fourier measurements

Fraunhofer (far-field) approximation:

|f (x, y)|2 ≈ 1

λ2z2

∣∣∣Î ( x
λz
,
y

λz

)∣∣∣2 ,
where I (x, y) = f (x, y, 0)

(complex-valued!).
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Variants of FPR

All variants are about Fourier measurements also

Coded diffraction Ptychography
Fourier

Holography
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Where’s the gap?

Recall: PR non-injective for 1D, but generically “injective” for 2D

or higher [Hayes, 1982, Bendory et al., 2017]

Symmetries in Fourier PR:

– translation

– 2D flipping

– global phase

GPR doesn’t contain the translation and flipping symmetries!

Albert Einstein: Everything should be made as simple as

possible, but no simpler.
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FPR remains difficult

– Most “natural” methods fail

* Effective methods: proximal methods [Luke et al., 2019]

* Exceptions: saddle point

optimization [Marchesini, 2007, Pham et al., 2019], 2nd

order ALM [Zhuang et al., 2020]

– Largely open: complex-valued without accurate support info,

e.g., [Marchesini et al., 2005]

– Low-photon regime, beam stop, etc, e.g., [Chang et al., 2018]
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DL for inverse problems

Inverse problems: given y = f (x), estimate x (f may be

unknown)

In FPR: f = |F (·)|2

– Traditional
min
x

` (y, f (x))︸ ︷︷ ︸
data fidelity

+λ Ω (x)︸ ︷︷ ︸
regularization

– Modern

* End-to-end: set up {xi,yi} to learn f−1 directly

* Hybrid (model-based, physics-inspired, etc): replace `, Ω,

or algorithmic components using learned functions, e.g.,

plug-and-play ADMM, unrolling ISTA

– “Modern” works better when “traditional” already works

Recent surveys: [McCann et al., 2017, Lucas et al., 2018,

Arridge et al., 2019, Ongie et al., 2020]
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How?

– Hybrid: replace `, Ω, or algorithmic components using learned

functions, e.g., plug-and-play ADMM, unrolling ISTA

“modern” works better when traditionally already works

Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO

needed for initialization—ineffective for hard cases

– End-to-end: set up {xi, |Fx|2} to learn f−1 directly

Attempts:

[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020]

with positive initial results

Focus here: end-to-end approach
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How good are they?

but remember the practical hard cases and symmetries?

practical evaluation should account for the symmetries
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Once we emulate the realistic symmetries
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Results using our methods

28 / 51



Why (over)-optimistic results in practice?

Data! Data! Data!

experimental data

naturally oriented and

centered

practical data

no natural orientation or

centering

Dataset bias breaks problem symmetries
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Why learning with symmetries is difficult?

Learning square roots!

nearby inputs mapped to remote outputs due to symmetries
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The difficulty is about one-to-many mapping

y = f (x) with f a many-to-one mapping

– symmetries in f

– nontrivial kernel space, e.g. subsampled MRI imaging, e.g.,

[Gottschling et al., 2020], or general underdetermined linear

inverse problems

Inverse f−1 is one-to-many mapping
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Get rid of the difficulty?

– active symmetry breaking

– passive symmetry breaking

Details in

* Deep Learning Initialized Phase Retrieval. Manekar R, Tayal K, Kumar V, Sun

J. NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, 2020.

https://sunju.org/pub/ICML20-WS-DL4FPR.pdf

* Unlocking Inverse Problems Using Deep Learning: Breaking Symmetries in

Phase Retrieval. Tayal K, Lai C, Manekar R, Zhuang Z, Kumar V, Sun J.

NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, 2020.

https://sunju.org/pub/ICML20-WS-DL4INV.pdf

* Inverse Problems, Deep Learning, and Symmetry Breaking. Tayal K, Lai C,

Manekar R, Kumar V, Sun J. ICML workshop on ML Interpretability for

Scientific Discovery, 2020. https://sunju.org/pub/ICML20-WS-DL4INV.pdf

* Phase Retrieval via Second-Order Nonsmooth Optimization. Zhuang Z, Wang

G, Travadi Y, Sun J. ICML workshop on Beyond First Order Methods in

Machine Learning, 2020.https://sunju.org/pub/ICML20-WS-ALM-FPR.pdf
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An easy solution to the square root example

idea: fix the sign symmetry
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Active symmetry breaking

Real Gaussian PR: y = |Ax|2 for illustration

find a smallest, representative, and connected subset

[Tayal et al., 2020]
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Does it work?

NN-A: after symmetry breaking

NN-B: before symmetry

breaking—denser sampling is

worse

K-NN: K-nearest neighbor regression
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Fourier PR

Pros: 1) math. principled 2) only symmetry info needed even if f

unknown [Krippendorf and Syvaeri, 2020]

Cons: math. involved
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Math-free alternative?

passive symmetry breaking

– If DNNW (yi) ≈ xi, then |F ◦DNNW (yi)|
2 ≈ |Fxi|2 = yi

– Consider

min
W

∑
i

` (yi, |F ◦DNNW (yi)|)

– Why it might work?

* DNNW is simple when symmetries are broken

* implicit regularization means simple DNNW is preferred

similar idea appears in [Metzler et al., 2020]
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Practical variants

– Regularized version (when data sampling is sparse):

min
W

∑
i

` (yi, |F ◦DNNW (yi)|) + λ ‖Jg (yi)‖
2
F

– Refinement (with the support) using classic methods, e.g., 2nd

order ALM [Zhuang et al., 2020]
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Fourier PR

Pros: 1) lightweight 2) general

Cons: 1) f is needed 2) dense data needed
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Current efforts

physically realistic datasets for Bragg CDI (270K data points)

in collaboration with Hofmann group at Oxford U.
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Contribution

active and passive symmetry breaking for PR (and general

inverse problems)

– End-to-end learning offers new opportunities for solving difficult

PR instances

– Current successes are contaminated by dataset biases

– Symmetry breaking offers a way out
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Thoughts

– Essential difficulty: use DL to approximate one-to-many

mapping

When there is forward symmetry (this talk)

When the forward mapping under-determined

(super-resolution, 3D structure from a single image)

or Both

– Not only learning difficulty, but also robustness

[Antun et al., 2020, Gottschling et al., 2020]
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