Does deep learning solve the phase retrieval problem?

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

July 17, 2020

Thanks to

Raunak Manekar

UMN

Kshitij Tayal UMN

Chieh-Hsin Lai UMN

Vipin Kumar UMN

Stefano Marchesini LBNL

More details in

- Inverse Problems, Deep Learning, and Symmetry Breaking Kshitij Tayal, Chieh-Hsin Lai, Raunak Manekar, Vipin Kumar, Ju Sun. ICML workshop on ML Interpretability for Scientific Discovery, 2020. https://sunju.org/pub/ICML20-WS-DL4INV.pdf
- End-to-End Learning for Phase Retrieval
 Raunak Manekar, Kshitij Tayal, Vipin Kumar, Ju Sun. ICML
 workshop on ML Interpretability for Scientific Discovery, 2020.
 https://sunju.org/pub/ICML20-WS-DL4FPR.pdf

More details in

- Inverse Problems, Deep Learning, and Symmetry Breaking Kshitij Tayal, Chieh-Hsin Lai, Raunak Manekar, Vipin Kumar, Ju Sun. ICML workshop on ML Interpretability for Scientific Discovery, 2020. https://sunju.org/pub/ICML20-WS-DL4INV.pdf
- End-to-End Learning for Phase Retrieval
 Raunak Manekar, Kshitij Tayal, Vipin Kumar, Ju Sun. ICML
 workshop on ML Interpretability for Scientific Discovery, 2020.
 https://sunju.org/pub/ICML20-WS-DL4FPR.pdf

see also

Phase Retrieval via Second-Order Nonsmooth Optimization Zhong Zhuang, Gang Wang, Yash Travadi, Ju Sun. ICML workshop on Beyond First Order Methods in Machine Learning, 2020. https://sunju.org/pub/ICML20-WS-ALM-FPR.pdf

DL for inverse problems

Given $oldsymbol{y} = f(oldsymbol{x})$, estimate $oldsymbol{x}$ (f may be unknown) - Traditional

 $\min_{\boldsymbol{x}} \ \ell\left(\boldsymbol{y}, f\left(\boldsymbol{x}\right)\right) + \lambda \Omega\left(\boldsymbol{x}\right)$

DL for inverse problems

Given $oldsymbol{y}=f\left(oldsymbol{x}
ight)$, estimate $oldsymbol{x}$ (f may be unknown) – Traditional

$$\min_{\boldsymbol{x}} \ \ell\left(\boldsymbol{y}, f\left(\boldsymbol{x}\right)\right) + \lambda \Omega\left(\boldsymbol{x}\right)$$

Modern

* End-to-end: set up $\{ {m x}_i, {m y}_i \}$ to learn f^{-1} directly

Given $\boldsymbol{y} = f(\boldsymbol{x})$, estimate \boldsymbol{x} (f may be unknown)

- Traditional

$$\min_{\boldsymbol{x}} \ \ell\left(\boldsymbol{y}, f\left(\boldsymbol{x}\right)\right) + \lambda \Omega\left(\boldsymbol{x}\right)$$

Modern

- * End-to-end: set up $\{x_i, y_i\}$ to learn f^{-1} directly
- * Hybrid: replace ℓ , Ω , or algorithmic components using **learned functions**, e.g., plug-and-play ADMM, unrolling ISTA

Given $\boldsymbol{y} = f(\boldsymbol{x})$, estimate \boldsymbol{x} (f may be unknown)

Traditional

$$\min_{\boldsymbol{x}} \ \ell\left(\boldsymbol{y}, f\left(\boldsymbol{x}\right)\right) + \lambda \Omega\left(\boldsymbol{x}\right)$$

Modern

- * End-to-end: set up $\{x_i, y_i\}$ to learn f^{-1} directly
- * Hybrid: replace ℓ , Ω , or algorithmic components using **learned functions**, e.g., plug-and-play ADMM, unrolling ISTA
- "Modern" works better when "traditional" already works

Given $\boldsymbol{y} = f(\boldsymbol{x})$, estimate \boldsymbol{x} (f may be unknown)

Traditional

$$\min_{\boldsymbol{x}} \ \ell\left(\boldsymbol{y}, f\left(\boldsymbol{x}\right)\right) + \lambda \Omega\left(\boldsymbol{x}\right)$$

Modern

- * End-to-end: set up $\{ m{x}_i, m{y}_i \}$ to learn f^{-1} directly
- * Hybrid: replace ℓ , Ω , or algorithmic components using **learned functions**, e.g., plug-and-play ADMM, unrolling ISTA
- "Modern" works better when "traditional" already works

Recent surveys: [McCann et al., 2017, Lucas et al., 2018, Arridge et al., 2019, Ongie et al., 2020]

Why DL for PR?

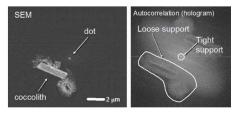
$\mathsf{PR}\xspace$ is difficult

PR is difficult

- Most traditional methods fail
 - * Effective methods: proximal methods [Luke et al., 2019]
 - * Exceptions: saddle point optimization [Marchesini, 2007],
 2nd order ALM [Zhuang et al., 2020]

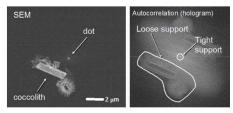
PR is difficult

- Most traditional methods fail
 - * Effective methods: proximal methods [Luke et al., 2019]
 - * Exceptions: saddle point optimization [Marchesini, 2007],
 2nd order ALM [Zhuang et al., 2020]
- Complex-valued without accurate support info, e.g., [Marchesini et al., 2005]



PR is difficult

- Most traditional methods fail
 - * Effective methods: proximal methods [Luke et al., 2019]
 - * Exceptions: saddle point optimization [Marchesini, 2007],
 2nd order ALM [Zhuang et al., 2020]
- Complex-valued without accurate support info, e.g., [Marchesini et al., 2005]



- Low-photon regime, beam stop, etc, e.g., [Chang et al., 2018]

Hybrid: replace *l*, Ω, or algorithmic components using learned functions, e.g., plug-and-play ADMM, unrolling ISTA
 "modern" works better when traditionally already works

Hybrid: replace ℓ, Ω, or algorithmic components using learned functions, e.g., plug-and-play ADMM, unrolling ISTA
 "modern" works better when traditionally already works
 Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO needed for initialization

- Hybrid: replace ℓ, Ω, or algorithmic components using learned functions, e.g., plug-and-play ADMM, unrolling ISTA
 "modern" works better when traditionally already works
 Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO needed for initialization
- End-to-end: set up $\{m{x}_i, |\mathcal{F}m{x}|^2\}$ to learn f^{-1} directly

- Hybrid: replace ℓ, Ω, or algorithmic components using learned functions, e.g., plug-and-play ADMM, unrolling ISTA
 "modern" works better when traditionally already works
 Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO needed for initialization
- End-to-end: set up $\{x_i, |\mathcal{F}x|^2\}$ to learn f^{-1} directly Attempts:

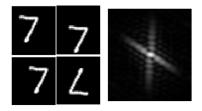
[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020] with positive initial results

- Hybrid: replace ℓ, Ω, or algorithmic components using learned functions, e.g., plug-and-play ADMM, unrolling ISTA
 "modern" works better when traditionally already works
 Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO needed for initialization
- End-to-end: set up $\{x_i, |\mathcal{F}x|^2\}$ to learn f^{-1} directly Attempts:

[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020] with positive initial results

Focus of this talk: end-to-end approach

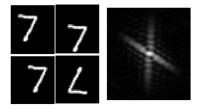
How good are they?



Symmetries in Fourier PR:

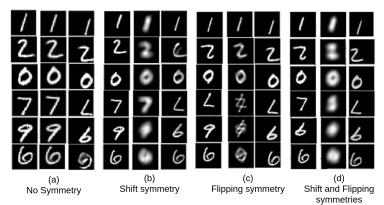
- shift
- 2D flipping
- global phase

How good are they?



Symmetries in Fourier PR:

- shift
- 2D flipping
- global phase

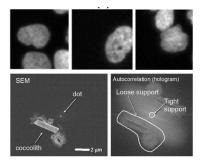


Why (over)-optimistic results in practice?

Data! Data! Data!

Why (over)-optimistic results in practice?

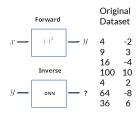
Data! Data! Data!



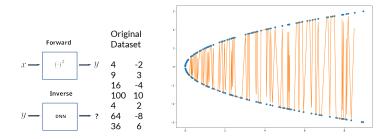
experimental data naturally oriented and centered practical data no natural orientation or centering

Dataset bias breaks problem symmetries

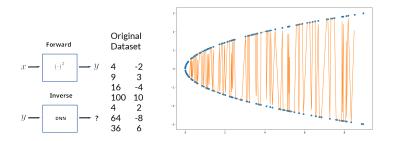
Learning square roots!



Learning square roots!



Learning square roots!



nearby inputs mapped to remote outputs due to symmetries

$oldsymbol{y} = f\left(oldsymbol{x} ight)$ with f a many-to-one mapping

- symmetries in f
 - Fourier phase retrieval [BBE17] The forward model is $Y = |\mathcal{F}(X)|^2$, where $X \in \mathbb{C}^{n \times n}$ and $Y \in \mathbb{R}^{m \times m}$ are matrices and \mathcal{F} is a 2D oversampled Fourier transform. The operation $|\cdot|$ takes complex magnitudes of the entries elementwise. It is known that translations and conjugate flippings applied on X, and also global phase transfer of the form $e^{i\theta}X$ all lead to the same Y.
 - Blind deconvolution [LG00, TB10] The forward model is $y = a \otimes x$, where *a* is the convolution kernel, *x* is the signal (e.g., image) of interest, and \otimes denotes the circular convolution. Both *a* and *x* are inputs. Here, $a \otimes x = (\lambda a) \otimes (x/\lambda)$ for any $\lambda \neq 0$, and circularly shifting *a* to the left and shifting *x* to the right by the same amount does not change *y*.
 - Synchronization over compact groups [PWBM18] For g₁,..., g_n over a compact group G, the observation is a set of pairwise relative measurements y_{ij} = g_ig_j⁻¹ for all (i, j) in an index set E ⊂ {1,...,n} × {1,...,n}. Obviously, any global shift of the form g_k → g_kg for all k ∈ {1,...,n}, for any g ∈ G, leads to the same set of measurements.

$oldsymbol{y} = f\left(oldsymbol{x} ight)$ with f a many-to-one mapping

- symmetries in f
 - Fourier phase retrieval [BBE17] The forward model is $Y = |\mathcal{F}(X)|^2$, where $X \in \mathbb{C}^{n \times n}$ and $Y \in \mathbb{R}^{m \times m}$ are matrices and \mathcal{F} is a 2D oversampled Fourier transform. The operation $|\cdot|$ takes complex magnitudes of the entries elementwise. It is known that translations and conjugate flippings applied on X, and also global phase transfer of the form $e^{i\theta}X$ all lead to the same Y.
 - Blind deconvolution [LG00, TB10] The forward model is $y = a \otimes x$, where *a* is the convolution kernel, *x* is the signal (e.g., image) of interest, and \otimes denotes the circular convolution. Both *a* and *x* are inputs. Here, $a \otimes x = (\lambda a) \otimes (x/\lambda)$ for any $\lambda \neq 0$, and circularly shifting *a* to the left and shifting *x* to the right by the same amount does not change *y*.
 - Synchronization over compact groups [PWBM18] For g₁,..., g_n over a compact group G, the observation is a set of pairwise relative measurements y_{ij} = g_ig_j⁻¹ for all (i, j) in an index set E ⊂ {1,...,n} × {1,...,n}. Obviously, any global shift of the form g_k → g_kg for all k ∈ {1,...,n}, for any g ∈ G, leads to the same set of measurements.
- nontrivial kernel space, e.g. subsampled MRI imaging, e.g., [Gottschling et al., 2020]

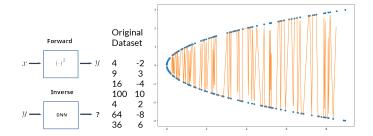
$oldsymbol{y} = f\left(oldsymbol{x} ight)$ with f a many-to-one mapping

- symmetries in f
 - Fourier phase retrieval [BBE17] The forward model is $Y = |\mathcal{F}(X)|^2$, where $X \in \mathbb{C}^{n \times n}$ and $Y \in \mathbb{R}^{m \times m}$ are matrices and \mathcal{F} is a 2D oversampled Fourier transform. The operation $|\cdot|$ takes complex magnitudes of the entries elementwise. It is known that translations and conjugate flippings applied on X, and also global phase transfer of the form $e^{i\theta}X$ all lead to the same Y.
 - Blind deconvolution [LG00, TB10] The forward model is y = a⊛x, where a is the convolution kernel, x is the signal (e.g., image) of interest, and ⊗ denotes the circular convolution. Both a and x are inputs. Here, a ⊗ x = (λa) ⊗ (x/λ) for any λ ≠ 0, and circularly shifting a to the left and shifting x to the right by the same amount does not change y.
 - Synchronization over compact groups [PWBM18] For g₁,..., g_n over a compact group G, the observation is a set of pairwise relative measurements y_{ij} = g_ig_j⁻¹ for all (i, j) in an index set E ⊂ {1,...,n} × {1,...,n}. Obviously, any global shift of the form g_k → g_kg for all k ∈ {1,...,n}, for any g ∈ G, leads to the same set of measurements.
- nontrivial kernel space, e.g. subsampled MRI imaging, e.g., [Gottschling et al., 2020]

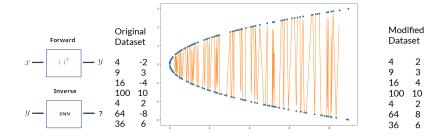
Inverse f^{-1} is one-to-many mapping

- active symmetry breaking
- passive symmetry breaking

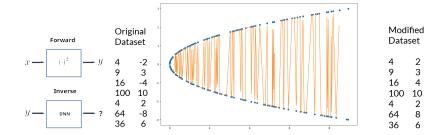
An easy solution to the square root example



An easy solution to the square root example



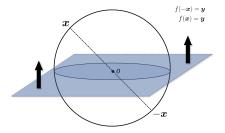
An easy solution to the square root example



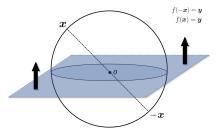
idea: fix the sign symmetry

Real Gaussian PR: $oldsymbol{y} = |oldsymbol{A}oldsymbol{x}|^2$ for illustration

Real Gaussian PR: $y = |Ax|^2$ for illustration



Real Gaussian PR: $y = |Ax|^2$ for illustration



find a **smallest**, **representative**, and **connected** subset [Tayal et al., 2020]

Does it work?

\overline{n}	Sample	NN-A	K-NN	NN-B	WNN-A	K-NN	WNN- B	DNN-A	K-NN	DNN- B
5	2e4	10	17	283	8	18	283	10	19	284
	5e4	6	12	282	8	17	284	7	14	285
	1e5	5	10	284	5	12	283	13	18	284
	1e6	4	7	283	5	6	283	7	8	283
10	2e4	11	20	82	9	22	82	8	21	82
	5e4	9	16	82	6	18	82	9	20	82
	1e5	9	16	82	6	15	82	8	17	82
	1e6	7	13	82	5	10	82	9	11	82
15	2e4	12	17	38	9	16	38	9	16	38
	5e4	11	14	38	9	14	38	8	15	38
	1e5	10	13	38	8	13	38	7	13	38
	1e6	8	9	38	7	10	38	9	10	38

- NN-A: after symmetry breaking more is worse NN-B: before symmetry breaking
- K-NN: K-nearest neighbor baseline



- Complex Gaussian PR [Tayal et al., 2020]

- Complex Gaussian PR [Tayal et al., 2020]
- (Fourier) PR: forthcoming

- Complex Gaussian PR [Tayal et al., 2020]
- (Fourier) PR: forthcoming

Pros: 1) math. principled 2) only symmetry info needed even if *f* unknown [Krippendorf and Syvaeri, 2020] **Cons**: math. involved passive symmetry breaking

- If $\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)pproxoldsymbol{x}_{i}$, then $\left|\mathcal{F}\circ\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)
ight|pprox\left|\mathcal{F}oldsymbol{x}_{i}
ight|=oldsymbol{y}_{i}$

passive symmetry breaking

- If $\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)pproxoldsymbol{x}_{i}$, then $\left|\mathcal{F}\circ\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)
ight|pprox\left|\mathcal{F}oldsymbol{x}_{i}
ight|=oldsymbol{y}_{i}$

- Consider

$$\min_{\boldsymbol{W}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, \left| \mathcal{F} \circ \text{DNN}_{\boldsymbol{W}}\left(\boldsymbol{y}_{i}\right) \right|\right)$$

passive symmetry breaking

- If $\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)pproxoldsymbol{x}_{i}$, then $\left|\mathcal{F}\circ\mathrm{DNN}_{oldsymbol{W}}\left(oldsymbol{y}_{i}
ight)
ight|pprox\left|\mathcal{F}oldsymbol{x}_{i}
ight|=oldsymbol{y}_{i}$

- Consider

$$\min_{\boldsymbol{W}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, \left| \mathcal{F} \circ \text{DNN}_{\boldsymbol{W}}\left(\boldsymbol{y}_{i}\right) \right|\right)$$

- Why it might work?

- * $\mathrm{DNN}_{oldsymbol{W}}$ is simple when symmetries are broken
- * implicit regularization means simple DNN_W is preferred

similar idea appears in [Metzler et al., 2020]

Does it work?

/ / /	/	1	/	/	/	/	/	ı	/
222	2 2	2	C	2	2	2	2	Τ.	Z
00	00	0	Ô	Ó	0	0	Q	8	0
774	- 7	8	Z	7	4	L	L		L
996	9		6	9	ŝ.	6	9	0	6
666	06	٩	6	6	Ø	6	6		6
338	6 3	\$	Ş	દ	σ_0	હ	દ		3
44	h 4	5	4	Ь	4	Ь	Ч		Ь
550	5 5		Ę	5	5	5	5		5
888	38		Ę	8	8	8	8	C	8 17/22

- Complex-valued images

- Complex-valued images
- Other datasets

- Complex-valued images
- Other datasets

Pros: 1) lightweight 2) general
Cons: 1) f is needed 2) dense data needed (?)

active and passive symmetry breaking for PR (and general inverse problems)

active and passive symmetry breaking for PR (and general inverse problems)

- End-to-end learning offers new opportunities for solving difficult PR instances
- Current successes are contaminated by dataset biases
- Symmetry breaking seems to offer a way out

- [Arridge et al., 2019] Arridge, S., Maass, P., Öktem, O., and Schönlieb, C.-B. (2019). Solving inverse problems using data-driven models. Acta Numerica, 28:1–174.
- [Chang et al., 2018] Chang, H., Lou, Y., Duan, Y., and Marchesini, S. (2018). Total variation-based phase retrieval for poisson noise removal. SIAM Journal on Imaging Sciences, 11(1):24–55.
- [Gottschling et al., 2020] Gottschling, N. M., Antun, V., Adcock, B., and Hansen, A. C. (2020). The troublesome kernel: why deep learning for inverse problems is typically unstable. arXiv:2001.01258.
- [Goy et al., 2018] Goy, A., Arthur, K., Li, S., and Barbastathis, G. (2018). Low photon count phase retrieval using deep learning. *Physical Review Letters*, 121(24).
- [Işil et al., 2019] Işil, Ç., Oktem, F. S., and Koç, A. (2019). Deep iterative reconstruction for phase retrieval. *Applied Optics*, 58(20):5422.

[Krippendorf and Syvaeri, 2020] Krippendorf, S. and Syvaeri, M. (2020). Detecting symmetries with neural networks. arXiv preprint arXiv:2003.13679.

- [Lucas et al., 2018] Lucas, A., Iliadis, M., Molina, R., and Katsaggelos, A. K. (2018). Using deep neural networks for inverse problems in imaging: Beyond analytical methods. *IEEE Signal Processing Magazine*, 35(1):20–36.
- [Luke et al., 2019] Luke, D. R., Sabach, S., and Teboulle, M. (2019). Optimization on spheres: Models and proximal algorithms with computational performance comparisons. SIAM Journal on Mathematics of Data Science, 1(3):408–445.
- [Marchesini, 2007] Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal of the Optical Society of America A, 24(10):3289.
- [Marchesini et al., 2005] Marchesini, S., Chapman, H. N., Barty, A., Cui, C., Howells, M. R., Spence, J. C. H., Weierstall, U., and Minor, A. M. (2005). Phase aberrations in diffraction microscopy. arXiv:physics/0510033.
- [McCann et al., 2017] McCann, M. T., Jin, K. H., and Unser, M. (2017). Convolutional neural networks for inverse problems in imaging: A review. *IEEE Signal Processing Magazine*, 34(6):85–95.

References iii

- [Metzler et al., 2020] Metzler, C. A., Heide, F., Rangarajan, P., Balaji, M. M., Viswanath, A., Veeraraghavan, A., and Baraniuk, R. G. (2020). Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. *Optica*, 7(1):63.
- [Metzler et al., 2018] Metzler, C. A., Schniter, P., Veeraraghavan, A., and Baraniuk, R. G. (2018). prdeep: Robust phase retrieval with a flexible deep network. arXiv preprint arXiv:1803.00212.
- [Ongie et al., 2020] Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., and Willett, R. (2020). Deep learning techniques for inverse problems in imaging. arXiv:2005.06001.
- [Tayal et al., 2020] Tayal, K., Lai, C.-H., Kumar, V., and Sun, J. (2020). Inverse problems, deep learning, and symmetry breaking. arXiv:2003.09077.
- [Uelwer et al., 2019] Uelwer, T., Oberstraß, A., and Harmeling, S. (2019). Phase retrieval using conditional generative adversarial networks. arXiv:1912.04981.
- [Zhuang et al., 2020] Zhuang, Z., Wang, G., Travadi, Y., and Sun, J. (2020). Phase retrieval via second-order nonsmooth optimization. In *ICML workshopon Beyond First Order Methods in Machine Learning.*