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Given y = f (x), estimate «  (f may be unknown)

— Traditional

min 4 (y, f (x)) + A\Q (x)

T

— Modern
* End-to-end: set up {x;,y;} to learn f~! directly
* Hybrid: replace ¢, €2, or algorithmic components using
learned functions, e.g., plug-and-play ADMM, unrolling
ISTA

— “"Modern” works better when “traditional” already works

Recent surveys: [McCann et al., 2017, Lucas et al., 2018,

Arridge et al., 2019, Ongie et al., 2020]
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[Marchesini et al., 2005]

Autocorrelation (hologram)
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— Low-photon regime, beam stop, etc, e.g., [Chang et al., 2018]
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— Hybrid: replace ¢, €, or algorithmic components using learned
functions, e.g., plug-and-play ADMM, unrolling ISTA

“modern” works better when traditionally already works

Attempts: [Metzler et al., 2018, Isil et al., 2019], but HIO
needed for initialization

— End-to-end: set up {x;, |Fx|*} to learn f~! directly
Attempts:
[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020]

with positive initial results

Focus of this talk: end-to-end approach
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Symmetries in Fourier PR:
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Symmetries in Fourier PR:

— shift
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— global phase
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symmetries

Flipping symmetry Shift and Flipping

Shift symmetry
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Why (over)-optimistic results in practice?

Data! Data! Datal
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Why (over)-optimistic results in practice?

Data! Data! Datal

Autocorrelation (hologram)

Loose support

noann B

experimental data practical data

naturally oriented and no natural orientation or

centered centering

Dataset bias breaks problem symmetries
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Why learning with symmetries is difficult?

Learning square roots!
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Why learning with symmetries is difficult?

Learning square roots!

Original ’ et T
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nearby inputs mapped to remote outputs due to symmetries
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Other examples

y = f () with f a many-to-one mapping

— symmetries in f

o Fourier phase retrieval [BBE17] The forward model is Y = |F(X)|?, where X € C"*" and
Y € R™*™ are matrices and F is a 2D oversampled Fourier transform. The operation |-| takes
complex magnitudes of the entries elementwise. It is known that translations and conjugate
flippings applied on X, and also global phase transfer of the form ¢ X all lead to the same
Y.

Blind deconvolution [LG00, TB10] The forward modelis y = a®zx, where a is the convolution
kernel, z is the signal (e.g., image) of interest, and ® denotes the circular convolution. Both a
and z are inputs. Here, a ® = (A\a) ® (x/)) for any A # 0, and circularly shifting a to the
left and shifting « to the right by the same amount does not change y.

Synchronization over compact groups [PWBM18] For g;,..., g, over a compact group G,
the observation is a set of pairwise relative measurements y;; = g,gj’l for all (4, j) in an index
set £ C {1,...,n} x {1.....n}. Obviously, any global shift of the form g; — grg for all

ke{l,....n}, forany g € G, leads to the same set of measurements.
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Inverse f~! is one-to-many mapping
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Get rid of the difficulty?

— active symmetry breaking

— passive symmetry breaking
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An easy solution to the square root example
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An easy solution to the square root example

Forward

T—| ()

Inverse

Original
Dataset
4 -2
9 3
16 -4 -
100 10
4 2
64 -8
36 6

Modified
Dataset

idea: fix the sign symmetry
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Active symmetry breaking

Real Gaussian PR: y = |Az|? for illustration
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Active symmetry breaking

Real Gaussian PR: y = |Ax|? for illustration

find a smallest, representative, and connected subset
[Tayal et al., 2020]
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Does it work?

n | Sample [NN-A K-NN NN-B | WNN-A K-NN WNN-B [ DNN-A K-NN DNN-B
ed T0 7 283 8 T3 733 T0 9 287
s 54 6 S g T7 737 7 s 785
‘ Tes 5 0 284 5 2 783 3 T8 284
Teb 7} 7 783 5 6 283 7 8 283
Ted T 20 ) 9 72 2 8 71 32
105 g 16 32 6 I3 ) 9 20 32
Tes g 16 32 6 I3 ) g 7 32
) 7 3 32 5 T0 2 9 T )
7ed W 7 8 9 6 18 9 6 18
15 5 T B! 38 9 4 38 8 5 38
TeS T0 3 k13 g 3 k13 7 3 38
Teb 3 9 33 7 T0 38 9 10 38

NN-A: after symmetry breaking —

more is worse

NN-B: before symmetry breaking

K-NN: K-nearest neighbor baseline
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More developments

— Complex Gaussian PR [Tayal et al., 2020]
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More developments

— Complex Gaussian PR [Tayal et al., 2020]
— (Fourier) PR: forthcoming

Pros: 1) math. principled 2) only symmetry info needed even if f
unknown [Krippendorf and Syvaeri, 2020]
Cons: math. involved
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Math-free alternative?

passive symmetry breaking

— If DNNw (y;) = x;, then |F o DNNw (y,)| = |Fxzi| = y;
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Math-free alternative?

passive symmetry breaking
- If DNNw (y;) = @;, then |F o DNNw (y;)| =~ [Fx;| = y;

— Consider

win 3" (. |F o DNNww (3,)

— Why it might work?
* DNNyw is simple when symmetries are broken
* implicit regularization means simple DNNyy is preferred

similar idea appears in [Metzler et al., 2020]

16 /22



Does it work?
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More developments

— Complex-valued images
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More developments

— Complex-valued images

— Other datasets

Pros: 1) lightweight 2) general
Cons: 1) f is needed 2) dense data needed (?)
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Contribution

active and passive symmetry breaking for PR (and general
inverse problems)
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Contribution

active and passive symmetry breaking for PR (and general
inverse problems)

— End-to-end learning offers new opportunities for solving difficult

PR instances
— Current successes are contaminated by dataset biases

— Symmetry breaking seems to offer a way out
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