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DL for inverse problems

Given y = f (x), estimate x (f may be unknown)

– Traditional

min
x

` (y, f (x)) + λΩ (x)

– Modern

* End-to-end: set up {xi,yi} to learn f−1 directly

* Hybrid: replace `, Ω, or algorithmic components using

learned functions, e.g., plug-and-play ADMM, unrolling

ISTA

– “Modern” works better when “traditional” already works

Recent surveys: [McCann et al., 2017, Lucas et al., 2018,

Arridge et al., 2019, Ongie et al., 2020]
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Why DL for PR?

PR is difficult

– Most traditional methods fail

* Effective methods: proximal methods [Luke et al., 2019]

* Exceptions: saddle point optimization [Marchesini, 2007],

2nd order ALM [Zhuang et al., 2020]

– Complex-valued without accurate support info, e.g.,

[Marchesini et al., 2005]

– Low-photon regime, beam stop, etc, e.g., [Chang et al., 2018]
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How?

– Hybrid: replace `, Ω, or algorithmic components using learned

functions, e.g., plug-and-play ADMM, unrolling ISTA

“modern” works better when traditionally already works

Attempts: [Metzler et al., 2018, Işıl et al., 2019], but HIO

needed for initialization

– End-to-end: set up {xi, |Fx|2} to learn f−1 directly

Attempts:

[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020]

with positive initial results

Focus of this talk: end-to-end approach
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How good are they?

Symmetries in Fourier PR:

– shift

– 2D flipping

– global phase
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Why (over)-optimistic results in practice?

Data! Data! Data!

experimental data

naturally oriented and

centered

practical data

no natural orientation or

centering

Dataset bias breaks problem symmetries
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Why learning with symmetries is difficult?

Learning square roots!

nearby inputs mapped to remote outputs due to symmetries

9 / 22



Why learning with symmetries is difficult?

Learning square roots!

nearby inputs mapped to remote outputs due to symmetries

9 / 22



Why learning with symmetries is difficult?

Learning square roots!

nearby inputs mapped to remote outputs due to symmetries

9 / 22



Other examples

y = f (x) with f a many-to-one mapping

– symmetries in f

– nontrivial kernel space, e.g. subsampled MRI imaging, e.g.,

[Gottschling et al., 2020]

Inverse f−1 is one-to-many mapping
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Get rid of the difficulty?

– active symmetry breaking

– passive symmetry breaking
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An easy solution to the square root example

idea: fix the sign symmetry
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Active symmetry breaking

Real Gaussian PR: y = |Ax|2 for illustration

find a smallest, representative, and connected subset

[Tayal et al., 2020]
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Does it work?

NN-A: after symmetry breaking —

more is worse

NN-B: before symmetry breaking

K-NN: K-nearest neighbor baseline
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More developments

– Complex Gaussian PR [Tayal et al., 2020]

– (Fourier) PR: forthcoming

Pros: 1) math. principled 2) only symmetry info needed even if f

unknown [Krippendorf and Syvaeri, 2020]

Cons: math. involved
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Math-free alternative?

passive symmetry breaking

– If DNNW (yi) ≈ xi, then |F ◦DNNW (yi)| ≈ |Fxi| = yi

– Consider

min
W

∑
i

` (yi, |F ◦DNNW (yi)|)

– Why it might work?

* DNNW is simple when symmetries are broken

* implicit regularization means simple DNNW is preferred

similar idea appears in [Metzler et al., 2020]
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Does it work?
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More developments

– Complex-valued images

– Other datasets

Pros: 1) lightweight 2) general

Cons: 1) f is needed 2) dense data needed (?)
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Contribution

active and passive symmetry breaking for PR (and general

inverse problems)

– End-to-end learning offers new opportunities for solving difficult

PR instances

– Current successes are contaminated by dataset biases

– Symmetry breaking seems to offer a way out
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