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Why phase retrieval?
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Phase retrieval

Phase retrieval (PR): Given | F (z)|?, recover x
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Phase retrieval

Phase retrieval (PR): Given | F (z)|?, recover x

— F: (discrete) Fourier transform
— a: 1D (vector), 2D (matrix), or 3D (tensor) signal
— Without ||?, a matter of F~1I
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1D example: spectral factorization

In signal processing, control, and stochastic processes, etc: given an
autocorrelation sequence » € R?"~! and its Z transform R (z)

spectral factorization: find X () so that R(2) = aX (z) X (27!) and
X (z) has all roots inside the unit circle.
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In signal processing, control, and stochastic processes, etc: given an
autocorrelation sequence » € R?"~! and its Z transform R (z)

spectral factorization: find X () so that R(2) = aX (z) X (27!) and
X (z) has all roots inside the unit circle.

<~ findzx e R"sothatr =z *x

< find z € R" so that F (r) = F (z * z) = | F (x)[?

So: given |F (x)|?, recover z— 1D PRI
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2D example: coherent diffraction imaging (CDI)
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(Credit: [Shechtman et al., 2015])
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2D example: coherent diffraction imaging (CDI)

(Credit: [Shechtman et al., 2015])

Fraunhofer (far-field) approximation:
1 |~/ 2
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where I (z,y) = f (z,y,0) (complex-valued!). /45



3D example: Bragg coherent diffraction imaging (BCDI)
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(Credit: [Maddali et al., 2020])
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3D example: Bragg coherent diffraction imaging (BCDI)
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(Credit: [Maddali et al., 2020]) (Credit: [Newton, 2020])

modern tools for x-ray crystallography, with application in chemistry,

materials, medicine, etc
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Nobel-level problem”

Nobel Prizes involving X-ray crystallography [es)

Year [hide] ¢ Laureate ¢ Prize o Rationale

1914 Max von Laue Physics | "For his discovery of the diffraction of X-rays by crystals",[147] an important step in the development of X-ray spectroscopy.

1915 William Henry Bragg Physics | "For their services in the analysis of crystal structure by means of X-rays"(148]

1915 William Lawrence Bragg Physics | "For their services in the analysis of crystal structure by means of X-rays"(148]

1962 Max F. Perutz Chemistry | “for their studies of the structures of globular proteins"(14%]

1962 John C. Kendrew Chemistry | “for their studies of the structures of globular proteins"(14%]

1962 James Dewey Watson Medicine | "For their discoveries conceming the molecular structure of nucleic acids and its significance for information transfer in living material*(1501
1962 Francis Harry Compton Crick | Medicine | “For their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material 250!
1962 Maurice Hugh Frederick Wilkins | Medicine | "For their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"150]
1964 Dorothy Hodgkin Chemistry | "For her determinations by X-ray techniques of the structures of important biochemical substances"(1511

1972 Stanford Moore Chemistry | "For their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonucle
1972 William H. Stein Chemistry | *For their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonucle
1976 William N. Lipscomb Chemistry | "For his studies on the structure of boranes illuminating problems of chemical bonding"I15%!

1985 Jerome Karle Chemistry | "For their outstanding achievements in developing direct methods for the determination of crystal structures”[154]

1985 Herbert A. Hauptman Chemistry | "For their outstanding achievements in developing direct methods for the determination of crystal structures™15¢]

1988 Johann Deisenhofer Chemistry | "For their determination of the th structure of a reaction centre"[155]

1988 Hartmut Michel Chemistry | "For their determination of the th structure of a reaction centre"[15%]

1988 Robert Huber Chemistry | “For their determination of the th structure of a reaction centre"[15%]

1997 John E. Walker Chemistry | "For their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)"[156]

2003 Roderick MacKinnon Chemistry | "For discoveries concering channels in cell membranes [...]for structural and mechanistic studies of ion channels*(157]

2003 Peter Agre Chemistry | "For discoveries concering channels in cell membranes [...] for the discovery of water channels"[17]

2006 Roger D. Kornberg Chemistry | "For his studies of the molecular basis of eukaryotic transcription”(158]

2009 Ada E. Yonath Chemistry | "For studies of the structure and function of the ribosome"IL5%]

2009 Thomas A. Steitz Chemistry | "For studies of the structure and function of the ribosome"[13%]

2000 Venkatraman Ramakrishnan | Chemistry | "For studies of the structure and function of the ribosome"IL5%]

2012 Brian Kobilka Chemistry | "For studiies of G-protein-coupled receptors™IL60]
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How people solve PR?
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Possible at all?

Phase retrieval: given |F (x)|, recover x

X

F is oversampled Fourier transform: non-injective for 1D, but

generically injective for 2D or
higher [Hayes, 1982, Bendory et al., 2017]
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Possible at all?

Phase retrieval: given |F (x)|, recover x

X

F is oversampled Fourier transform: non-injective for 1D, but

generically injective for 2D or
higher [Hayes, 1982, Bendory et al., 2017]

— M constraint: |F (X)]
— S constraint: A(X)=0

Y
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A brief history of algorithms

— Before 70's: error reduction
method [Gerchberg and Saxton, 1972]

— Around 80's: hybrid input-output method [Fienup, 1982]

= Google Scholar

James R Fienup
Institute of Optics, University of Rochester
Verified email at optics.rochester.edu - Homepage

Phase retrieval  image reconstruction  wavefront sensing

TITLE CITEDBY  YEAR

Phase retrieval algorithms: a comparison
JR Fienup
Applied optics 21 (15), 2758-2769

5027 1982

Reconstruction of an object from the modulus of its Fourier transform 1788 1978
JR Fie

u
Optics letters 3 (1), 27-29
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Applied optics 21 (15), 2758-2769
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Optics le
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— Around 2000: connection to Douglas-Rachford method
identified [Bauschke et al., 2002]

— Later variants: RAAR [Luke, 2004], difference
map [Elser et al., 2007], see recent review [Luke et al., 2019]
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PR algorithms

Standard: alternating projection methods

Popular: Fienup's hybrid input-output (HIO) and variants

No guaranteed recovery (projection onto nonconvex sets)

Often slow in practice, and sensitive to optimization parameters

Hybrid Input-Output (HIO) = Applying Douglas-Rachford
splitting to oo + 0s—ADMM! [Wen et al., 2012]
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Insights from randomness?

(Fourier) phase retrieval:

For a complex signal = € C", given | Fz|?, recover .
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Insights from randomness?

(Fourier) phase retrieval:

For a complex signal = € C", given | Fz|?, recover .

Generalized phase retrieval:

For a complex signal € C", given | Ax|> where A contains

randomness, recover x.

xray

sample source
mask

diffraction
pattern

coded-diffraction
CDI [Candeés et al., 2015]
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Insights from the Gaussian case?

y = |ajx| for i =1,...,m where a;'s complex Gaussian vectors
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Insights from the Gaussian case?

y = |ajx| for i =1,...,m where a;'s complex Gaussian vectors

a beautiful init 4+ local descent result

Cornell University F——

Search...

arXiv.org > cs > arXiv:1407.1065

Help | Advanced §

Computer Science > Information Theory

Phase Retrieval via Wirtinger Flow: Theory and
Algorithms

Emmanuel Candes, Xiaodong Li, Mahdi Soltanolkotabi

(Submitted on 3 Jul 2014 (v1), last revised 24 Nov 2015 (this version, v3))

We study the problem of recovering the phase from magnitude measurements;
specifically, we wish to reconstruct a complex-valued signal x of C*n about which
we have phaseless samples of the formy_r=|<a_rx>[*2,r=1,2,...m
(knowledge of the phase of these samples would yield a linear system). This

naner develnns a nan-canvey farmiilation of the nhase ratrieval nrahlem ac well

14 /45



My own results

Given yi, = |ajx| for k =1,...,m, a;'s iid complex Gaussians,
recover x (up to a global phase).
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min f = — — |a}z|?)?
zeCn 2ﬂ@
k:l
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My own results

Given yi, = |ajx| for k =1,...,m, a;'s iid complex Gaussians,
recover x (up to a global phase).

1 m
i = — — laLz
min f( kazlyk lajz|*)?

. os
W T -
” O e T 1

Theorem ([Sun et al., 2016])
When a;'s generic and m large, with high probability

all local minimizers are global, all saddles are nice.
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| was happy until ...

ABOUT  PROGRAMS  VISITNG  VIDEO
Home  rograms and At » Spaca Warksnaps

PHASELESS IMAGING IN THEORY AND PRACTIC

ALGORITHMS, AND RECOVERY GUARANTEES
August 14 -18, 2017

+ About
- Programs

Thematc Programs.

REALISTIC MODELS, FAST

Data Science

Hol Topics Workshops

Overview | Schedule  Partcipants
Welh-to-Incusiry Boot Garmp.

Public Loclures. Poster:  SW 141847 poster pct

Seminars

Organizers:
‘Special Workshops
Markiven Michigan State Unvers

Avchived Prograrms Rayan Saat Uniersity o Calfomia, San Diego,

+ Visiing it
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Take-home messages

Fienup: | find it interesting people have tried
to analyze Gaussian phase retrieval.

James R Fienup
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Take-home messages

James R Fienup

Fienup: | find it interesting people have tried
to analyze Gaussian phase retrieval.

Beautiful mathematical results gathered so far
[Chi et al., 2018,
Fannjiang and Strohmer, 2020]

17 /45



PR is about Fourier measurements

—FOURIER
OPTICS

Fraunhofer (far-field) approximation: {} K,

e
Co\we‘e“\wa

2

)

1 |~r2 vy
I - =z
f @) = 222 ’ ()\z’ )\z>
where I (z,y) = f (z,y,0)
(complex-valued!).

Joseph W, Goodman
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Variants

All variants are about Fourier measurements also

Fourier
Coded diffraction Ptychography Holography

mask Scan Positions

diffraction
pattem

@ P(r)

Beam =

Optic or
Pinhole

sample
olr)

Detector
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Where’s the gap?

Symmetries in Fourier PR:
— translation
— 2D flipping
— global phase
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Where's the gap?

Symmetries in Fourier PR:
— translation
— 2D flipping
— global phase

GPR: For a complex signal « € C", given |Az|? where A
contains randomness, recover x.

GPR doesn’t contain the translation and flipping symmetries!

Albert Einstein: Everything should be made as simple as possible,
but no simpler.
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Deep learning for PR?
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DL for inverse problems

Given y = f (x), estimate «  (f may be unknown)

— Traditional

min 4 (y, f (x)) + A\Q (x)

T
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DL for inverse problems

Given y = f (x), estimate «  (f may be unknown)

— Traditional

min 4 (y, f (x)) + A\Q (x)

T

— Modern
* End-to-end: set up {x;,y;} to learn f~! directly
* Hybrid: replace ¢, €2, or algorithmic components using
learned functions, e.g., plug-and-play ADMM, unrolling
ISTA

— “"Modern” works better when “traditional” already works

Recent surveys: [McCann et al., 2017, Lucas et al., 2018,

Arridge et al., 2019, Ongie et al., 2020]
22 /45



Why DL for PR?

PR is difficult
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Why DL for PR?

PR is difficult

— Most traditional methods fail
* Effective methods: proximal methods [Luke et al., 2019]
* Exceptions: saddle point optimization [Marchesini, 2007],
2nd order ALM [Zhuang et al., 2020]

— Complex-valued without accurate support info, e.g.,
[Marchesini et al., 2005]

Autocorrelation (hologram)

Loose support
2\

<. Tight
5 J support

/
coccolith

— Low-photon regime, beam stop, etc, e.g., [Chang et al., 2018]
23/45



— Hybrid: replace ¢, €, or algorithmic components using learned
functions, e.g., plug-and-play ADMM, unrolling ISTA

“modern” works better when traditionally already works
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— Hybrid: replace ¢, €, or algorithmic components using learned
functions, e.g., plug-and-play ADMM, unrolling ISTA

“modern” works better when traditionally already works

Attempts: [Metzler et al., 2018, Isil et al., 2019], but HIO
needed for initialization

— End-to-end: set up {x;, |Fx|*} to learn f~! directly
Attempts:
[Goy et al., 2018, Uelwer et al., 2019, Metzler et al., 2020]

with positive initial results

Focus of this talk: end-to-end approach
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How good are they?

Symmetries in Fourier PR:
|iii|||||ii|| — shift
— 2D flipping
— global phase
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symmetries

Flipping symmetry Shift and Flipping

Shift symmetry
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Why (over)-optimistic results in practice?

Data! Data! Datal
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Why (over)-optimistic results in practice?

Data! Data! Datal

Autocorrelation (hologram)

Loose support

pnaon =

experimental data practical data

naturally oriented and no natural orientation or

centered centering

Dataset bias breaks problem symmetries
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Why learning with symmetries is difficult?

Learning square roots!

Original

Forward Dataset
= ) |—vy 4 -2
9 3

16 -4

Inverse 100 10

4 2

Y—| owmw |— 2 64 -8
36 6
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Why learning with symmetries is difficult?

Learning square roots!

Original ’ il T [1 | I
Forward Dataset |
= ) |—vy 4 -2
9 3
16 -4
Inverse 100 10
4 2
Y=—| ow |— 2 64 -8
36 6 -

nearby inputs mapped to remote outputs due to symmetries
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Other examples

y = f () with f a many-to-one mapping

— symmetries in f

o Fourier phase retrieval [BBE17] The forward model is Y = |F(X)|?, where X € C"*" and
Y € R™*™ are matrices and F is a 2D oversampled Fourier transform. The operation |-| takes
complex magnitudes of the entries elementwise. It is known that translations and conjugate
flippings applied on X, and also global phase transfer of the form ¢ X all lead to the same
Y.

Blind deconvolution [LG00, TB10] The forward modelis y = a®zx, where a is the convolution
kernel, z is the signal (e.g., image) of interest, and ® denotes the circular convolution. Both a
and z are inputs. Here, a ® = (A\a) ® (x/)) for any A # 0, and circularly shifting a to the
left and shifting « to the right by the same amount does not change y.

Synchronization over compact groups [PWBM18] For g;,..., g, over a compact group G,
the observation is a set of pairwise relative measurements y;; = g,gj’l for all (4, j) in an index
set £ C {1,...,n} x {1.....n}. Obviously, any global shift of the form g; — grg for all

ke{l,....n}, forany g € G, leads to the same set of measurements.
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and z are inputs. Here, a ® = (A\a) ® (x/)) for any A # 0, and circularly shifting a to the
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Synchronization over compact groups [PWBM18] For g;...., gn OVer a compact group G,

the observation is a set of pairwise relative measurements y;; = g,gj’l for all (4, j) in an index
set £ C {1,...,n} x {1.....n}. Obviously, any global shift of the form g; — grg for all
ke{l,....n}, forany g € G, leads to the same set of measurements.

— nontrivial kernel space, e.g. subsampled MRI imaging, e.g.,
[Gottschling et al., 2020]

Inverse f~! is one-to-many mapping
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Get rid of the difficulty?

— active symmetry breaking

— passive symmetry breaking
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An easy solution to the square root example

. ,."m‘\‘m
Original 1T | |
Forward Dataset . i ‘
r=—| () |—¥y 4 -2
9 3
16 -4 -
Inverse 100 10
4 2
Y=—| ow |— 2 64 -8
36 6
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easy solution to the square root example

Original Modified

Forward Dataset Dataset
rT=—| O |—Y 4 -2 4 2
9 3 9 3

16 -4 - 16 4

Inverse 100 10 100 10

4 2 - 4 2

Y=—| ow |[— 2?2 64 -8 4 8
36 6 36 6
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An easy solution to the square root example

Forward

T—| ()

Inverse

Original
Dataset
4 -2
9 3
16 -4 -
100 10
4 2
64 -8
36 6

Modified
Dataset

idea: fix the sign symmetry
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Active symmetry breaking

Real Gaussian PR: y = |Az|? for illustration
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Active symmetry breaking

Real Gaussian PR: y = |Ax|? for illustration
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Active symmetry breaking

Real Gaussian PR: y = |Ax|? for illustration

find a smallest, representative, and connected subset
[Tayal et al., 2020]
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Does it work?

n | Sample [NN-A K-NN NN-B | WNN-A K-NN WNN-B [ DNN-A K-NN DNN-B
ed T0 7 283 8 T3 733 T0 9 287
s 54 6 S g T7 737 7 s 785
‘ Tes 5 0 284 5 2 783 3 T8 284
Teb 7} 7 783 5 6 283 7 8 283
Ted T 20 ) 9 72 2 8 71 32
105 g 16 32 6 I3 ) 9 20 32
Tes g 16 32 6 I3 ) g 7 32
) 7 3 32 5 T0 2 9 T )
7ed W 7 8 9 6 18 9 6 18
15 5 T B! 38 9 4 38 8 5 38
TeS T0 3 k13 g 3 k13 7 3 38
Teb 3 9 33 7 T0 38 9 10 38

NN-A: after symmetry breaking —

more is worse

NN-B: before symmetry breaking

K-NN: K-nearest neighbor baseline
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More developments

— Complex Gaussian PR [Tayal et al., 2020]
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More developments

— Complex Gaussian PR [Tayal et al., 2020]
— (Fourier) PR: forthcoming

Pros: 1) math. principled 2) only symmetry info needed even if f
unknown [Krippendorf and Syvaeri, 2020]
Cons: math. involved
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Math-free alternative?

passive symmetry breaking

— If DNNw (y;) = x;, then |F o DNNw (y,)| = |Fxzi| = y;
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Math-free alternative?

passive symmetry breaking

— If DNNw (y;) = x;, then |F o DNNw (y,)| = |Fxzi| = y;

— Consider

i {(y, DNN .
H‘}‘l/n ; (y“|]:o W(yz)D
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Math-free alternative?

passive symmetry breaking
- If DNNw (y;) = @;, then |F o DNNw (y;)| =~ [Fx;| = y;

— Consider

win 3" (. |F o DNNww (3,)

— Why it might work?
* DNNyw is simple when symmetries are broken
* implicit regularization means simple DNNyy is preferred

similar idea appears in [Metzler et al., 2020]
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Does it work?

~ O N NO o\
- wm s e N
-~ Q Y W S
~ N O R ® PT N ™
~ MO NKND W L 0| %
,......L.O/.._/bzw(l I\ |
SRR IR R AR AR E Ak
~ Nl NN | 0%
O N WD
~NO NNIO M T\
~ O NND I\




More developments

— Complex-valued images
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More developments

— Complex-valued images
— Other datasets

— For high accuracy, use the DL result to initialize a local
method, e.g., 2nd order ALM [Zhuang et al., 2020]
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More developments

— Complex-valued images
— Other datasets

— For high accuracy, use the DL result to initialize a local
method, e.g., 2nd order ALM [Zhuang et al., 2020]

Pros: 1) lightweight 2) general
Cons: 1) f is needed 2) dense data needed—Jacobian
regularization to the rescue
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Contribution

active and passive symmetry breaking for PR (and general
inverse problems)
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Contribution

active and passive symmetry breaking for PR (and general
inverse problems)

— End-to-end learning offers new opportunities for solving difficult

PR instances
— Current successes are contaminated by dataset biases

— Symmetry breaking seems to offer a way out
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Thoughts

— Essential difficulty: use DL to approximate one-to-many
mapping
When there is forward symmetry (this talk)
When the forward mapping under-determined
(super-resolution, 3D structure from a single image)
or Both
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Thoughts

— Essential difficulty: use DL to approximate one-to-many
mapping
When there is forward symmetry (this talk)
When the forward mapping under-determined
(super-resolution, 3D structure from a single image)
or Both
— Not only learning difficulty, but also robustness
[Antun et al., 2020, Gottschling et al., 2020}

Original o+ 11|

AUTOMAP f(Ar) = ) AUTOMAP (A(x +11))

S
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More details in

— Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal, Chieh-Hsin Lai, Raunak Manekar, Vipin Kumar, Ju Sun.
ICML workshop on ML Interpretability for Scientific Discovery, 2020.
https://sunju.org/pub/ICML20-WS-DLAINV . pdf

— End-to-End Learning for Phase Retrieval
Raunak Manekar, Kshitij Tayal, Vipin Kumar, Ju Sun. ICML
workshop on ML Interpretability for Scientific Discovery, 2020.
https://sunju.org/pub/ICML20-WS-DLAFPR. pdf

— Phase Retrieval via Second-Order Nonsmooth Optimization
Zhong Zhuang, Gang Wang, Yash Travadi, Ju Sun. ICML workshop
on Beyond First Order Methods in Machine Learning, 2020.
https://sunju.org/pub/ICML20-WS-ALM-FPR. pdf
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