Deep Learning with Nontrivial Constraints

Ju Sun

McKnight Land-Grant Professor Computer Science & Engineering

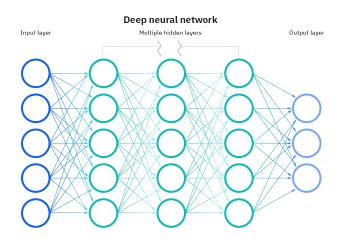
Dec 10, 2025

Industrial and Systems Engineering Graduate Seminar

Research in the group

https://glovex.umn.edu/

(Machine) Learning, (Numerical) Optimization, (Computer) Vision, healthcarE, + X



Our research themes

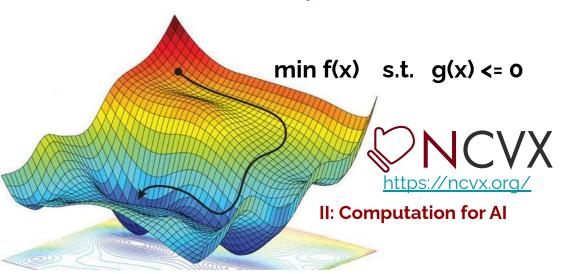
FOOLING THE AI

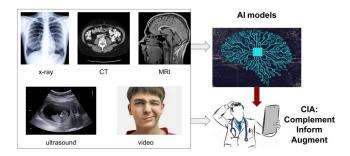
Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'.

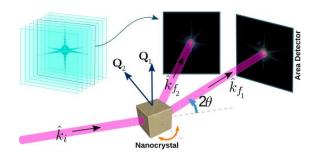


I: Trustworthy AI





III: AI for Healthcare



IV: Al for Science and Engineering

Robustness & Deployability of Deep Learning Models

First general-purpose, reliable solver for robust evaluation

$$\max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right)$$
s. t. $d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon$, $\boldsymbol{x}' \in [0, 1]^n$

$$\min_{\boldsymbol{x}'} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right)$$
s. t.
$$\max_{i \neq y} f_{\boldsymbol{\theta}}^{i}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{y}(\boldsymbol{x}') \ , \ \boldsymbol{x}' \in [0, 1]^{n}$$

Reliability

- SOTA methods
 No stopping criterion (only use maxit); step size scheduler
- PWCF (ours)
 Principled line-search criterion and termination condition

Generality

- SOTA methods
 Can mostly only handle several lp metrics (l1,l2,linf)
- PWCF (ours)
 Any differentiable metrics and both min and max forms
 E.g., perceptual $d(\boldsymbol{x}, \boldsymbol{x}') \doteq \|\phi(\boldsymbol{x}) \phi(\boldsymbol{x}')\|_2$ distance where $\phi(\boldsymbol{x}) \doteq [\widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x})]$

Selective predictions for safety and deployability

predictor $f: \mathcal{X} \to \mathbb{R}^K$

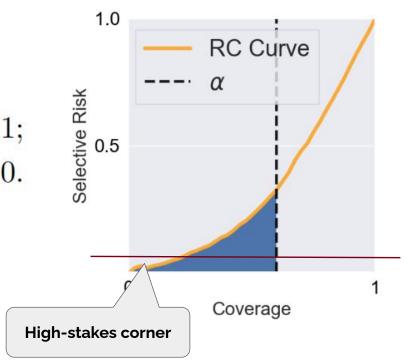
selector $g: \mathcal{X} \to \{0, 1\}$

$$(f,g)(\boldsymbol{x}) \triangleq \begin{cases} f(\boldsymbol{x}) & \text{if } g(\boldsymbol{x}) = 1; \\ \text{abstain} & \text{if } g(\boldsymbol{x}) = 0. \end{cases}$$

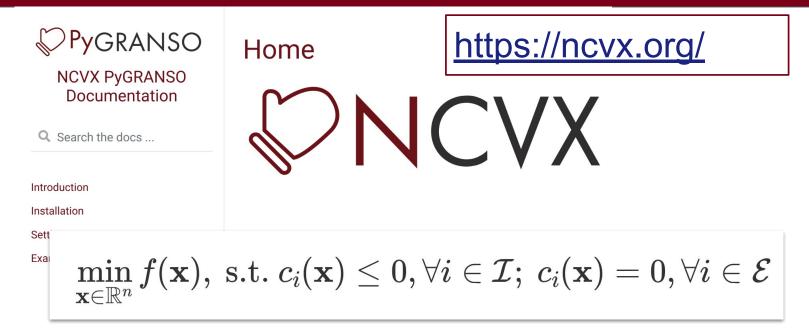
No prediction on uncertain samples and defer them to humans

$$g_{\gamma}(\boldsymbol{x}) = \mathbb{1}[s(\boldsymbol{x}) > \gamma]$$

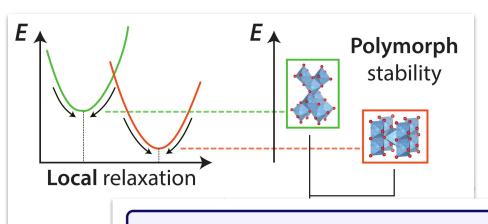
Typically, selection by thresholding prediction confidence



Computation for Deep Learning with Nontrivial Constraints



- First general-purpose solver for <u>hard-constrained</u> deep learning problems
- Recently updated to be compatible with PyTorch 2.8



Enabling

Robustness evaluation

$$\max_{\boldsymbol{x}'} \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}'))$$

s. t.
$$x' \in \Delta(x) = \{x' \in [0,1]^n : d(x,x') \le \varepsilon\}$$

$$\min_{\boldsymbol{x}' \in [0,1]^n} \ d(\boldsymbol{x}, \boldsymbol{x}') \quad \text{s. t. } \max_{\ell \neq y} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{y}(\boldsymbol{x}')$$

Stabilit respe phase se

- (W-CSTR-T) Weak explicit constraints informed by phase transition: For each composition, the energy/atom of any non-ground-state polymorph is greater than that of the ground-state polymorph
- (W-CSTR-S) Weak explicit constraints informed by phase separation: For each chemical space, the energy/atom of any TUS material is above the lower convex envelope in the composition-energy space

 $\min_{\boldsymbol{\theta}} \ \frac{1}{N} \sum_{i=1}^{N} \ell(\boldsymbol{y}_i, f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) + \Omega(\boldsymbol{\theta}) \quad \text{s. t.} \quad f_{\boldsymbol{\theta}}(\boldsymbol{x}_p) \ge f_{\boldsymbol{\theta}}(\boldsymbol{x}_q) \ \forall \ (p, q) \in \mathcal{O}_{W-CSTR-T},$

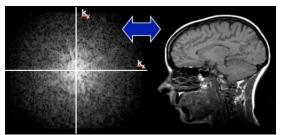
NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning

s. t.
$$\frac{\sum_{i=1}^{N} \mathbb{1} \{y_i = +1\} \mathbb{1} \{f_{\theta}(x_i) > t\}}{\sum_{i=1}^{N} \mathbb{1} \{y_i = +1\}} \ge \alpha$$

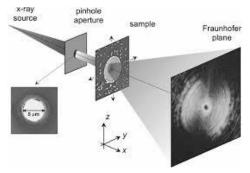
Yash, Le, Zhong, Buyun

Generative Models for Scientific/Engineering Inverse Modeling

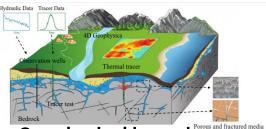
(inverse problems, reconstruction, data assimilation, inverse design/control, conditional generation, estimation ...)



MRI reconstruction



Coherent diffraction imaging



Geophysical inversion Porous and

Inverse shape control

Given $m{y} pprox f(m{x})$, recover $m{x}$

$$\min_{\boldsymbol{x}} \ \ell(\boldsymbol{y}, f(\boldsymbol{x})) + \Omega(\boldsymbol{x})$$

Challenges:

- Linear vs. **nonlinear** f
- Unconstrained vs. constrained
 (e.g., PDE (x, y) = 0)
- Explicit vs. **implicit** f

A plug-in principle for leveraging pretrained deep generative models to solve IM

object-only datasets $\{oldsymbol{x}_i\}_{i=1,...,N}$

Distribution learning via deep generative models

Data

Fixed forward diffusion process

Noise

Generative reverse denoising process

Plug in pretrained deep generative priors

$$\min_{m{z}} \ \mathcal{L}(m{z}) \doteq \ell(m{y}, \mathcal{A} \circ \mathcal{G}_{m{ heta}}(m{z})) + \Omega \circ \mathcal{G}_{m{ heta}}(m{z})$$

DMPlug: A Plug-in Method for Solving Inverse Problems with Diffusion Models

Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, Ju Sun

NeurIPS'24, with **domain-specific** priors

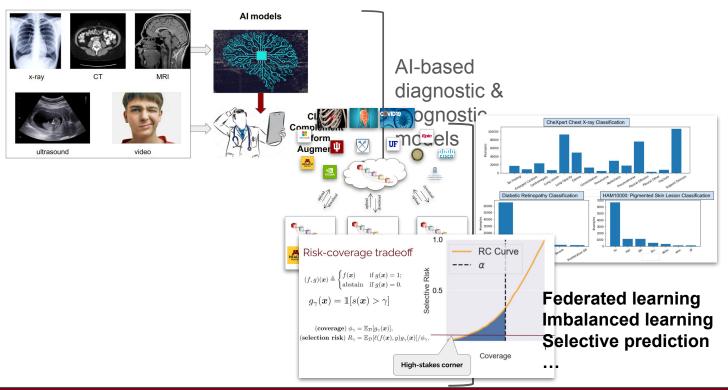
Saving Foundation Flow-Matching Priors for Inverse Problems

Yuxiang Wan, Ryan Devera, Wenjie Zhang, Ju Sun

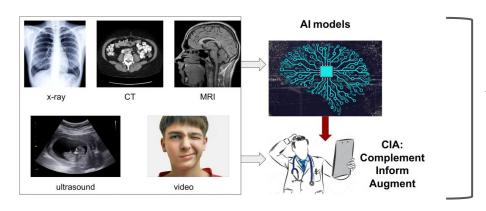
Submitted to ICLR'25, with **foundation** priors (e.g., stable diffusion models)

Challenge: Foundation generative models are powerful because **they're not specific**

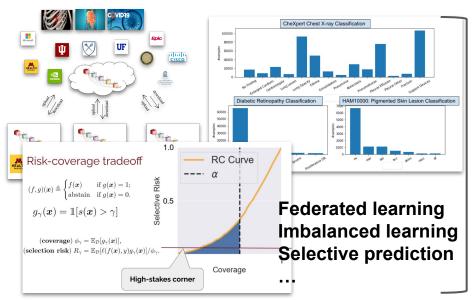
Applied and basic research in Al for Healthcare



Basic research to address data sparsity, data imbalance, and AI safety in healthcare (& beyond)



Al-based diagnostic models



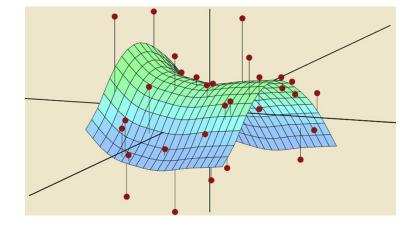
Basic research to address data sparsity, data imbalance, and Al safety in healthcare (& beyond)

Supported by 3+ (4th forthcoming) active NIH R01 grants

Thanks to our funders

Practical Optimization for Deep Learning with Nontrivial Constraints

Three fundamental questions in DL



- **Approximation**: is it powerful, i.e., the ${\cal H}$ large enough for all possible weights?
- Optimization: how to solve

$$\min_{\boldsymbol{w}_{i}'s,\boldsymbol{b}_{i}'s} \frac{1}{n} \sum_{i=1}^{n} \ell\left[\boldsymbol{y}_{i},\left\{\mathsf{NN}\left(\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{k},b_{1},\ldots,b_{k}\right)\right\}\left(\boldsymbol{x}_{i}\right)\right]$$

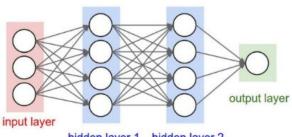
Generalization: does the learned NN work well on "similar" data?

Isn't it solved?	Adadelta	Implements Adadelta algorithm.
Base class	Adagrad	Implements Adagrad algorithm.
CLASS torch.optim.Optimizer(params, defaults) [SO Base class for all optimizers.	Adamax	Implements Adamax algorithm (a variant of Adam based on infinity norm).
Parameters need to be specified as collections consistent between runs. Examples of objects and iterators over values of dictionaries.	ASGD	Implements Averaged Stochastic Gradient Descent.
	LBFGS	Implements L-BFGS algorithm, heavily inspired by minFunc.
Parameters: • params (iterable) – an iterable of to	NAdam	Implements NAdam algorithm.
Tensors should be optimized. • defaults – (dict): a dict containing of when a parameter group doesn't spe	RAdam	Implements RAdam algorithm.
		20 Mg APPAN (1 Mg)

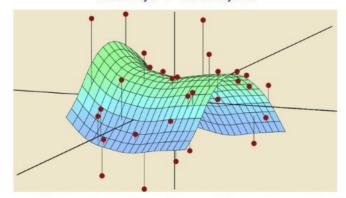
Algorithms

When DL meets constraints

Artificial neural networks



hidden layer 1 hidden layer 2



used to approximate nonlinear functions

Unconstrained optimization

$$\min_{oldsymbol{w}_i's, oldsymbol{b}_i's} rac{1}{n} \sum_{i=1}^n \ell\left[oldsymbol{y}_i, \left\{\mathsf{NN}\left(oldsymbol{w}_1, \dots, oldsymbol{w}_k, b_1, \dots, b_k
ight)
ight\}\left(oldsymbol{x}_i
ight)}{\min_{oldsymbol{x}} f(oldsymbol{x})}$$
 "Solved"

Constrained optimization

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s. t. $g(\boldsymbol{x}) \leq \mathbf{0}$

largely "unsolved"

Constrained optimization

This talk is about GAPS

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s.t. $g(\boldsymbol{x}) \leq \mathbf{0}$

largely "unsolved"

An imaginary chat between a PhD student working in deep learning (**DLP**) and a PhD student working in optimization (**OP**)

DLP: Man, I've solved a constrained DL problem recently

OP: Oh, that's a hard problem DLP: Really? I actually did it

OP: How?

DLP: My problem is $\min_x \ f(x)$, s.t. $g(x) \le 0$. I put g(x) as a penalty and then call ADAM

OP: Are you sure it works?

DLP: Yes, the performance is improved and my paper is published at ICML

OP: Why don't you try augmented Lagrangian methods?

DLP: No implementation in Pytorch. Is it possible we work out some theory about my method?

OP: I think it's hard. It's not convex

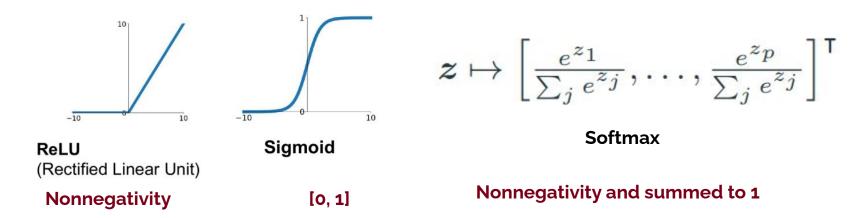
Outline

Constrained deep learning: CDL

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

DL with simple constraints

Embedding constraints into DL models



DL with nontrivial constraints

- Robustness evaluation
- Imbalanced learning
- Topology optimization

Contrastive learning

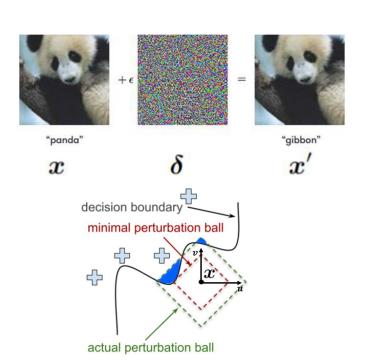
Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He¹, Ryan Devera¹, Wenjie Zhang¹, Ying Cui², Zhaosong Lu³ and Ju Sun¹

¹Computer Science and Engineering, University of Minnesota ²Industrial Engineering and Operations Research, University of California, Berkeley ³Industrial and Systems Engineering, University of Minnesota

{he000233, dever120, zhan7867}@umn.edu, yingcui@berkeley.edu, {zhaosong, jusun}@umn.edu

Robustness evaluation (RE)



 $\max_{{m x}'}\ell\left({m y},f_{{m heta}}({m x}')\right)$ Maximize loss function s. t. $d\left({m x},{m x}'
ight) \leq arepsilon$, $\left[{m x}'\in[0,1]^n\right]$

Allowable perturbation

Valid image

Minimize robustness radius

$$\frac{\min_{\boldsymbol{x}'} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right)}{\text{s. t.} \left[\max_{i \neq y} f_{\boldsymbol{\theta}}^{i}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{y}(\boldsymbol{x}')\right], \boldsymbol{x}' \in [0, 1]^{n} }$$

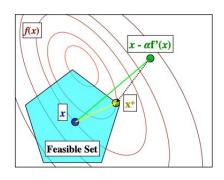
Change the predicted class

Valid image

Projected gradient descent (PGD) for RE

$$\mathbf{x}_{k+1} = P_{\mathcal{Q}}\Big(\mathbf{x}_k - lpha_k^{\mathbf{x}}
abla f(\mathbf{x})$$
 Step size

$$P_{\mathcal{Q}}(\mathbf{x}_0) = \arg\min_{\mathbf{x} \in \mathcal{Q}} \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|_2^2$$
 Projection operator



Key hyperparameters:

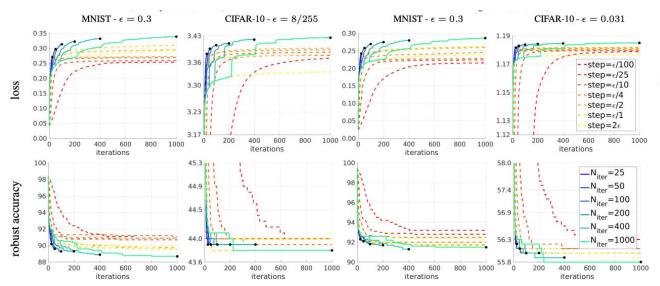
- (1) step size
- (2) iteration number

```
\max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right)
s.t. d(\boldsymbol{x}, \boldsymbol{x}') \leq \varepsilon, \boldsymbol{x}' \in [0, 1]^n
```

```
Algorithm 1 APGD
 1: Input: f, S, x^{(0)}, \eta, N_{\text{iter}}, W = \{w_0, \dots, w_n\}
 2: Output: x_{\text{max}}, f_{\text{max}}
 3: x^{(1)} \leftarrow P_{\mathcal{S}}(x^{(0)} + \eta \nabla f(x^{(0)}))
  4: f_{\text{max}} \leftarrow \max\{f(x^{(0)}), f(x^{(1)})\}
 5: x_{\text{max}} \leftarrow x^{(0)} if f_{\text{max}} \equiv f(x^{(0)}) else x_{\text{max}} \leftarrow x^{(1)}
 6: for k=1 to N_{\text{iter}}-1 do
 7: z^{(k+1)} \leftarrow P_{S}(x^{(k)} + \eta \nabla f(x^{(k)}))
 8: x^{(k+1)} \leftarrow P_{\mathcal{S}} \left( x^{(k)} + \alpha (z^{(k+1)} - x^{(k)}) \right)
                                 +(1-\alpha)(x^{(k)}-x^{(k-1)})
 9: if f(x^{(k+1)}) > f_{\text{max}} then
             x_{\text{max}} \leftarrow x^{(k+1)} and f_{\text{max}} \leftarrow f(x^{(k+1)})
          end if
         if k \in W then
              if Condition 1 or Condition 2 then
                 \eta \leftarrow \eta/2 and x^{(k+1)} \leftarrow x_{\text{max}}
              end if
          end if
17: end for
```

Ref https://angms.science/doc/CVX/CVX_PGD.pdf https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf

Problem with PGD



$$\max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right)$$
 s.t. $d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon$, $\boldsymbol{x}' \in [0, 1]^n$

Tricky to set: iteration number & step size i.e., tricky to decide where to stop

Ref Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. Croce, F., Hein, M., ICML 2020 https://arxiv.org/pdf/2003.01690.pdf

RE: penalty methods for complicated d

$$egin{aligned} \max_{oldsymbol{x'}} \ell\left(oldsymbol{y}, f_{oldsymbol{ heta}}(oldsymbol{x}')
ight) \ & ext{s. t. } d\left(oldsymbol{x}, oldsymbol{x}'\right) \leq arepsilon \ , \quad oldsymbol{x}' \in [0, 1]^n \end{aligned}$$
 s. t. $d\left(oldsymbol{x}, oldsymbol{x}'\right) \leq arepsilon \ , \quad oldsymbol{x}' \in [0, 1]^n$ $d\left(oldsymbol{x}, oldsymbol{x}'\right) \doteq \|\phi(oldsymbol{x}) - \phi(oldsymbol{x}')\|_2 \quad \text{perceptual}$ where $\phi(oldsymbol{x}) \doteq [\ \widehat{g}_1(oldsymbol{x}), \ldots, \widehat{g}_L(oldsymbol{x})\]$ distance

Projection onto the constraint is complicated

Penalty methods

$$\max_{\widetilde{\mathbf{x}}} \qquad \mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max \left(0, \|\phi(\widetilde{\mathbf{x}}) - \phi(\mathbf{x})\|_2 - \epsilon\right)$$

Solve it for each fixed λ and then increase λ

Algorithm 2 Lagrangian Perceptual Attack (LPA)

```
1: procedure LPA(classifier network f(\cdot), LPIPS distance d(\cdot, \cdot), input x, label y, bound \epsilon)
              \lambda \leftarrow 0.01
             \widetilde{\mathbf{x}} \leftarrow \mathbf{x} + 0.01 * \mathcal{N}(0, 1)
                                                                                   ⊳ initialize perturbations with random Gaussian noise
              for i in 1, \ldots, S do
                                                                           \triangleright we use S=5 iterations to search for the best value of \lambda
                    for t in 1, \ldots, T do
                                                                                                                                     \triangleright T is the number of steps
                           \Delta \leftarrow \nabla_{\widetilde{\mathbf{x}}} \left[ \mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max \left( 0, d(\widetilde{\mathbf{x}}, \mathbf{x}) - \epsilon \right) \right]
                                                                                                                                       b take the gradient of (5)
                           \hat{\Delta} = \Delta / \|\Delta\|_2
                                                                                                                                        ▷ normalize the gradient
                           \eta = \epsilon * (0.1)^{t/T}
                                                                                                                \triangleright the step size \eta decays exponentially
                           m \leftarrow d(\widetilde{\mathbf{x}}, \widetilde{\mathbf{x}} + h\widehat{\Delta})/h \quad \triangleright m \approx \text{derivative of } d(\widetilde{\mathbf{x}}, \cdot) \text{ in the direction of } \widehat{\Delta}; h = 0.1
                           \widetilde{\mathbf{x}} \leftarrow \widetilde{\mathbf{x}} + (\eta/m)\hat{\Delta}
10:
                                                                                                           \triangleright take a step of size \eta in LPIPS distance
11:
                     end for
12:
                    if d(\widetilde{\mathbf{x}}, \mathbf{x}) > \epsilon then
                            \lambda \leftarrow 10\lambda
                                                                                             \triangleright increase \lambda if the attack goes outside the bound
13:
                    end if
14:
15:
              end for
16:
              \widetilde{\mathbf{x}} \leftarrow \text{PROJECT}(d, \widetilde{\mathbf{x}}, \mathbf{x}, \epsilon)
17:
              return \tilde{x}
18: end procedure
```

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C., Singla, S., & Feizi, S. https://arxiv.org/abs/2006.12655

Problem with penalty methods

	cross-entropy loss		margin loss	
Method	Viol. (%) ↓	Att. Succ. (%) ↑	Viol. (%) ↓	Att. Succ. (%) ↑
Fast-LPA	73.8	3.54	41.6	56.8
LPA	0.00	80.5	0.00	97.0
PPGD	5.44	25.5	0.00	38.5
PWCF (ours)	0.62	93.6	0.00	100

 $egin{aligned} \max_{oldsymbol{x}'} \ell\left(oldsymbol{y}, f_{oldsymbol{ heta}}(oldsymbol{x}), f_{oldsymbol{ heta}}(oldsymbol{x}') \leq arepsilon \ , \quad oldsymbol{x}' \in [0, 1]^n \end{aligned}$ s.t. $d\left(oldsymbol{x}, oldsymbol{x}'\right) \leq arepsilon \ , \quad oldsymbol{x}' \in [0, 1]^n$ $d\left(oldsymbol{x}, oldsymbol{x}'\right) \doteq \|\phi(oldsymbol{x}) - \phi(oldsymbol{x}')\|_2$ where $\phi(oldsymbol{x}) \doteq [\ \widehat{g}_1(oldsymbol{x}), \dots, \widehat{g}_L(oldsymbol{x})\]$

LPA, Fast-LPA: penalty methods PPGD: Projected gradient descent Penalty methods tend to encounter large constraint violation (i.e., infeasible solution, known in optimization theory) or suboptimal solution

PWCF, an optimizer with a principled stopping criterion on **stationarity & feasibility**

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv:2303.13401.

Unreliable optimization == Unreliable RE

Outline

Constrained deep learning: CDL

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

DL frameworks

JAX: Autograd and XLA

For unconstrained DL problems

Convex optimization solvers and frameworks

Modeling languages

SDPT³ - a Matlas software package for semidefinite-quadratic-linear programming

K. C. Toh, R. H. Tütüncü, and M. J. Todd.

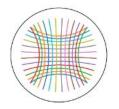
TFOCS: Templates for First-Order Conic Solvers

Solvers

Not for DL, which involves NCVX optimization

Manifold optimization

Geomstats



 $\mathcal{T}_p\mathcal{G}$ geoopt

McTorch Lib, a manifold optimization library for deep learning

Only for differentiable manifolds constraints

General constrained optimization

ensmallen
flexible C++ library for efficient numerical optimization

IPOPT

GENO

Interior-point methods

Augmented Lagrangian methods

TensorFlow Constrained Optimization (TFCO)

Lagrangian-method-based constrained optimization

Specialized ML packages

Problem-specific solvers that **cannot be easily extended** to new formulations

Outline

Constrained deep learning: CDL

- What, how, and why for CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

Issues with typical CDL methods

projected gradient descent

$$\min_{\mathbf{x} \in \mathcal{Q}} f(\mathbf{x})$$

$$\mathbf{x}_{k+1} = P_{\mathcal{Q}} \Big(\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k) \Big)$$

Issue: no principled stopping criterion/step size rules

Lagrangian method

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} \ \check{f}(\boldsymbol{x}) + \boldsymbol{\lambda}^{\intercal} g(\boldsymbol{x})$$

Idea: alternating minimize $oldsymbol{x}$ and maximize $oldsymbol{\lambda}$ via gradient descent

penalty methods

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s.t. $g(\boldsymbol{x}) \leq \mathbf{0}$

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \lambda \max(0, g(\boldsymbol{x}))$$

Solved with increasing λ sequence

Issue: infeasible solution

Issues

- Infeasible solution
- Slow convergence

Want

- Feasible & stationary solution
- Reasonable speed

Principled answers to these questions

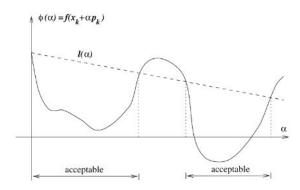
Feasible & stationary solution

Stationarity and feasibility check: KKT condition

• Reasonable speed

Line search

A hidden problem: nonsmoothness



Armijo (Sufficient Decrease) Condition

Key algorithm

Nonconvex, nonsmooth, constrained

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}), \text{ s.t. } c_i(\boldsymbol{x}) \leq 0, \ \forall \ i \in \mathcal{I}; \ c_i(\boldsymbol{x}) = 0, \ \forall \ i \in \mathcal{E}.$$

Penalty sequential quadratic programming (P-SQP)

$$\min_{d \in \mathbb{R}^n, \ s \in \mathbb{R}^p} \quad \mu(f(x_k) + \nabla f(x_k)^\mathsf{T} d) + e^\mathsf{T} s + \frac{1}{2} d^\mathsf{T} H_k d$$
s.t.
$$c(x_k) + \nabla c(x_k)^\mathsf{T} d \le s, \quad s \ge 0,$$

Ref: **Curtis, Frank E., Tim Mitchell, and Michael L. Overton**. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Algorithm highlights

Steering strategy for the penalty parameter

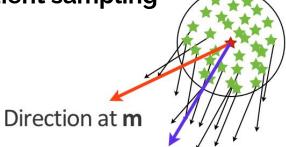
If feasibility improvement is insufficient: $l_{\delta}(d_k; x_k) < c_{\nu} v(x_k)$

Stationarity based on (approximate) gradient sampling

$$G_k := \begin{bmatrix} \nabla f(x^k) & \nabla f(x^{k,1}) & \cdots & \nabla f(x^{k,m}) \end{bmatrix}$$

$$\min_{\lambda \in \mathbb{R}^{m+1}} \frac{1}{2} \|G_k \lambda\|_2^2$$

s.t.
$$\mathbb{1}^T \lambda = 1, \ \lambda \geq 0$$



Gradient sampling direction

Key take-away

- Principled stopping criterion and line search, to obtain a solution with certificate (stationarity & feasibility check)
- Quasi-newton style method for fast convergence, i.e.,
 reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.


```
% Gradient of inner product with respect to A
f_grad
           = imag((conj(Bty)*Cx.')/(y'*x));
f_grad
           = f_grad(:);
% Gradient of inner product with respect to A
ci_grad
           = real((conj(Bty)*Cx.')/(y'*x));
ci grad
           = ci_grad(:);
```

analytical gradients required

```
= size(B, 2);
             = size(C,1);
m
X
            = reshape(x,p,m);
```

vector variables only

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

⇒ impossible to do deep learning with GRANSO

GRANSO meets PyTorch

NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning

First general-purpose solver for constrained DL problems

Outline

Constrained deep learning: CDL

- What and how for CDL
- Why CDL
- No good solvers for CDL yet
- Granso and PyGranso
- PyGranso in action
- Outlook

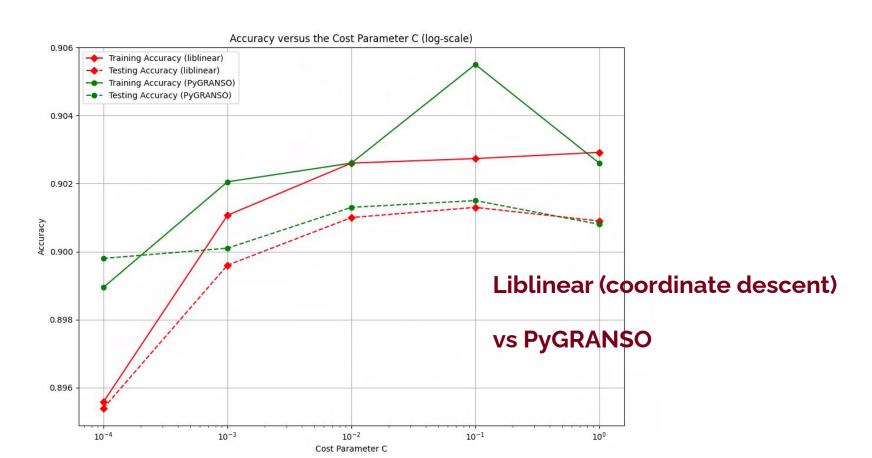
Example 1: Support Vector Machine (SVM)

Soft-margin SVM

$$\begin{aligned} & \min_{\boldsymbol{w},b,\zeta} \frac{1}{2} \left\| \boldsymbol{w} \right\|^2 + C \sum_{i=1}^n \zeta_i \\ & \text{s.t.} \quad y_i \left(\boldsymbol{w}^\intercal \boldsymbol{x}_i + b \right) \geq 1 - \zeta_i, \ \zeta_i \geq 0 \ \ \forall i = 1,...,n \end{aligned}$$

```
def comb fn(X struct):
    # obtain optimization variables
    w = X struct.w
    b = X struct.b
    zeta = X struct.zeta
    # objective function
    f = 0.5*w.T@w + C*torch.sum(zeta)
    # inequality constraints
    ci = pygransoStruct()
    ci.c1 = 1 - zeta - y*(x@w+b)
    ci.c2 = -zeta
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variables
var in = {"w": [d,1], "b": [1,1], "zeta": [n,1]}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

Binary classification (odd vs even digits) on MNIST dataset



Example 2: Robustness eval. —min formulation

```
\min_{oldsymbol{x}'} \quad d(oldsymbol{x}, oldsymbol{x}')
s. t. \max_{\ell \neq c} f_{oldsymbol{	heta}}^{\ell}(oldsymbol{x}') \geq f_{oldsymbol{	heta}}^{c}(oldsymbol{x}')
oldsymbol{x}' \in [0, 1]^n
```

```
def comb fn(X struct):
    # obtain optimization variables
    x prime = X struct.x prime
    # objective function
    f = d(x, x prime)
    # inequality constraints
    ci = pygransoStruct()
    f theta all = f theta(x prime)
    fy = f theta all[:,y] # true class output
    # output execpt true class
    fi = torch.hstack((f theta all[:,:y],f theta all[:,y+1:]))
    ci.cl = fy - torch.max(fi)
    ci.c2 = -x prime
    ci.c3 = x prime-1
    # equality constraint
    ce = None
    return [f.ci.ce]
# specify optimization variable (tensor)
var in = {"x prime": list(x.shape)}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

CIFAR10 dataset

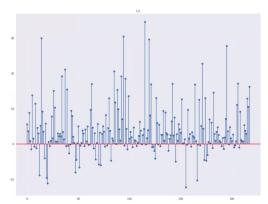
Compared with FAB [iterative constraint linearization + projected gradient]

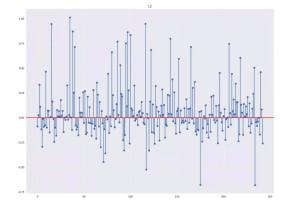
https://github.com/fra31/auto-attack

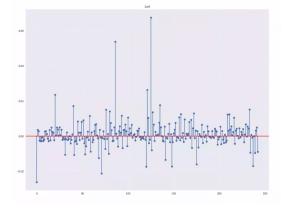
$$\min_{\boldsymbol{x}'} \quad d(\boldsymbol{x}, \boldsymbol{x}')$$

s.t. $\max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}')$ $\boldsymbol{x}' \in [0, 1]^{n}$

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius







L1 attack

L2 attack

Linf attack

https://ncvx.org/

Many others

NCVX PyGRANSO Documentation

Q Search the docs ... Introduction Installation Settings

Examples

Eigenvalue Optimization

Dictionary Learning

Rosenbrock

Nonlinear Feasibility Problem

Sphere Manifold

Trace Optimization

Robust PCA

Generalized LASSO

Logistic Regression

LeNet5

Perceptual Attack

Orthogonal RNN

Highlights

\leftarrow

Home

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

The initial release of NCVX contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. As a highlight, PyGRANSO can solve general constrained deep learning problems, the first of its kind.

Our current developments

- PyGranso: deterministic SQP solver
- More scalable deterministic solvers (exact penalty, single-loop ALM, etc)
- Algorithm foundations for stochastic objective with stochastic constraints/numerous constraints
- Scalable solvers for stochastic objective with stochastic constraints/numerous constraints

Closing

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He^1 , Ryan Devera 1 , Wenjie Zhang 1 , Ying Cui 2 , Zhaosong Lu 3 and Ju Sun 1

¹Computer Science and Engineering, University of Minnesota ²Industrial Engineering and Operations Research, University of California, Berkeley ³Industrial and Systems Engineering, University of Minnesota

{he000233, dever120, zhan7867}@umn.edu, yingcui@berkeley.edu, {zhaosong, jusun}@umn.edu

Home

 $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}), \text{ s.t. } c_i(\mathbf{x}) \leq 0, orall i \in \mathcal{I}; \ c_i(\mathbf{x}) = 0, orall i \in \mathcal{E}$

NCVX Package

First general-purpose solver for constrained DL problems

NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun

Thanks to all contributors

Prof. Tim Mitchell (CS, Queens Col.)

Prof. Ying Cui (IEOR, UC Berkely)

Prof. Qizhi He (CSGE, UMN)

Prof.
Zhaosong Lu
(CSGE, UMN)

Dr. Chuan He (CS&E, UMN)

Thanks to all contributors

Buyun Liang (CSE U Penn; Formally, CS&E, UMN)

Ryan de Vera (CS&E, UMN)

Hengyue Liang (ECE, UMN)

Wenjie Zhang (CS&E, UMN)

Yash Travadi (CS&E, UMN)

Le Peng (CS&E, UMN)