Deep Learning with Constraints and Nonsmoothness

Ju Sun Computer Science & Engineering University of Minnesota

Thanks to

Buyun Liang (Master, CS&E, UMN)

Hengyue Liang (PhD, ECE, UMN)

Dr. Tim Mitchell (MPI Magdeburg → Queens College, CUNY)

A quick example

A quick example

f_{θ} : deep learning model

How to solve

 $\max_{\boldsymbol{x}'} \quad \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')) \\ \text{s.t.} \quad d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon \\ \boldsymbol{x}' \in [0, 1]^n$

Unconstrained optimization only

 $d = \ell_1, \ell_2, \ell_\infty$

Projected gradient methods

Simple d only

ROBUSTBENCH

A standardized benchmark for adversarial robustness

https://robustbench.github.io/

$$d(x, x') = ||g(x) - g(x')||$$
???

A quick example

 $f_{\boldsymbol{\theta}}$: deep learning model

 $\max_{\boldsymbol{x}'} \quad \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}'))$

s.t.
$$d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon$$

def comb_fn(X_struct): # obtain optimization variables x_prime = X_struct.x_prime # objective function f = loss_func(y, f_theta(x_prime)) # inequality constraint ci = pygransoStruct() ci.cl = d(x,x_prime) - epsilon # equality constraint ce = None return [f,ci,ce] # specify optimization variable (tensor) var_in = {"x_prime": list(x.shape)} # pygranso main algorithm soln = pygranso(var_in,comb_fn)

MCVX https://ncvx.org/

Versio Licens	on 1.2.0 sed under tl	he AGPLv3, Copyri	ght (C) 2021-2022	Tim Mitche	ll and H	Buyun	Liang			
Proble # of # of # of	em specifica variables inequality equality co	ations: constraints pnstraints	: 3072 : 1 : 0]		I		
Iter	< Pena Mu	lty Function> Value	0bjective	Total Vio Ineq	lation Eq	< SD	Line Se Evals	earch> t	<- Sta Grads	tionarity -> Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	0.50909392739 0.13139580076 0.035364659 0.03305865013 0.17664891011 0.29911013557 0.35472121343 0.46871129466 0.58872108700 0.62616245130 0.62616245130 0.64267769247 0.74731841034 0.79218506008 0.83822978425 0.83648479749 0.91321142003 0.92405471150 0.9266778204	0.50909392739 0.1313958076 0.1213155717 0.23057738209 0.45942430204 0.58140452016 0.68329983929 0.75604941379 0.80585740448 0.8869577749 0.93742006017 0.9326757218 1.0000000000 0.94460724778 0.99960270319 1.0000000000 1.0000000000	0.000000 0.098785 0.197519 0.285457 0.383150 0.404756 0.384190 0.401328 0.337146 0.377679 0.262533 0.294742 0.235049 0.207815 0.161770 0.689922 0.086391 0.075945 0.041392		·	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00000 1.000000 0.50000 0.50000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000000		0.752374 0.569790 0.3944019 0.391431 0.436613 0.349554 0.484603 0.357295 0.760431 1.010051 0.548706 0.638738 0.870128 0.606221 0.504724 0.260043 1.303794 0.601452 0.29231 0.106619
Iter	< Pena Mu	lty Function> Value	0bjective	Total Vio Ineq	lation Eq	< SD	Line Se Evals	earch> t	<- Sta Grads	tionarity -> Value
20 21 22 23	1.000000 1.000000 1.000000 1.000000	-0.97443979631 -0.98244681692 -0.99989348389 -1.00000000000	-0.98763548475 -1.00000000000 -0.99989348389 -1.00000000000	0.013196 0.017553 0.000000 0.000000	-	S S S	1 3 2 3	1.000000 0.250000 2.000000 0.250000	1 1 1 1	1.048798 0.052289 0.409106 0.000000
Optim: F = f:	ization res inal iterate	ults: e, B = Best (to to	olerance), MF = Mo	ost Feasible	e	J		L L		
F B MF			-1.00000000000 -1.00000000000 -1.0000000000	0.000000 0.000000 0.000000	-					
Itera Funct: PyGRA	tions: ion evaluat: NSO termina	23 ions: 34 tion code: 0	converged to stati	ionarity an	d feasil	oility	tolera	nces.		

PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

Motivation

Example 1: Robustness of deep models f_{θ} : deep learning model

Robustness in adversarial settings

 $\max_{\boldsymbol{x}'} \quad \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}'))$ s.t. $d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon$ $\boldsymbol{x}' \in [0, 1]^n$ Robustness limit of deep models (safety radius)

$$\min_{oldsymbol{x}'} \quad d(oldsymbol{x},oldsymbol{x}')$$

s.t.
$$\max_{\ell \neq c} f_{\theta}^{\ell}(\boldsymbol{x}') \ge f_{\theta}^{c}(\boldsymbol{x}')$$
$$\boldsymbol{x}' \in [0, 1]^{n}$$

A standardized benchmark for adversarial robustness

https://robustbench.github.io/

SOTA PGD-based methods only for $d=\ell_1,\ell_2,\ell_\infty$ Hand-optimized step-size schedule

Example 2: Physics-informed neural networks (PINNs)

$$f\left(\mathbf{x};\frac{\partial u}{\partial x_{1}},\ldots,\frac{\partial u}{\partial x_{d}};\frac{\partial^{2} u}{\partial x_{1}\partial x_{1}},\ldots,\frac{\partial^{2} u}{\partial x_{1}\partial x_{d}};\ldots;\boldsymbol{\lambda}\right)=0,\quad\mathbf{x}\in\Omega,\qquad\quad\mathcal{B}(u,\mathbf{x})=0\quad\text{on}\quad\partial\Omega$$

PDE

Boundary Condition

- Auto-differentiation replaces finite-difference (mesh-free)
- Potential for **efficiently** solving high-dimensional problems
- SOTA: penalty methods (recently Lagrangian methods)

Ref: Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM Review 63.1 (2021): 208-228.

Observations

• People try to avoid complicated constraints

• If constraints cannot be avoided, people will do naive things — penalty methods (e.g., Lagrangian methods)

General-purpose solvers

Solvers	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem
SDPT3, Gurobi, Cplex, TFOCS, CVX(PY), AMPL, YALMIP	×	\checkmark	×	×	×
PyTorch, Tensorflow	V	V	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt, GeoTorch	V	V	V	×	×
KNITRO, IPOPT, GENO, ensmallen	\checkmark	\checkmark	\checkmark	\checkmark	×
Scikit-learn, MLib, Weka	\checkmark	\checkmark	×	×	\checkmark

NCVX PyGRANSO

Nonconvex, nonsmooth, constrained

http://www.timmitchell.com/software/GRANSO/

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x}), \text{ s.t. } c_i(\boldsymbol{x})\leq 0, \ \forall \ i\in\mathcal{I}; \ \ c_i(\boldsymbol{x})=0, \ \forall \ i\in\mathcal{E}.$$

Exact penalty method

$$\phi(x;\mu) = \mu f(x) + v(x) \qquad v(x) = \| \max\{c(x), 0\} \|_1 = \sum_{i \in \mathcal{P}_x} c_i(x) \quad \text{where } \mathcal{P}_x = \{i \in \{1, \dots, p\} : c_i(x) > 0\}$$

Penalty sequential quadratic programming (P-SQP)

$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \quad \mu(f(x_k) + \nabla f(x_k)^{\mathsf{T}} d) + e^{\mathsf{T}} s + \frac{1}{2} d^{\mathsf{T}} H_k d$$

s.t. $c(x_k) + \nabla c(x_k)^{\mathsf{T}} d \le s, \quad s \ge 0,$

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Algorithm highlights

Steering strategy for the penalty parameter

If feasibility improvement is insufficient : $l_{\delta}(d_k; x_k) < c_{\nu}v(x_k)$

Stationarity based on (approximate) gradient sampling

$$G_k := \begin{bmatrix} \nabla f(x^k) & \nabla f(x^{k,1}) & \cdots & \nabla f(x^{k,m}) \end{bmatrix}$$
$$\min_{\lambda \in \mathbb{R}^{m+1}} \frac{1}{2} \| G_k \lambda \|_2^2$$
s.t. $\mathbb{1}^T \lambda = 1, \ \lambda \ge 0$

Direction at **m**

Gradient sampling direction

analytical gradients required

Lack of Auto-Differentiation

р	=	<pre>size(B,2);</pre>
m	=	<pre>size(C,1);</pre>
х	=	<pre>reshape(x,p,m);</pre>

vector variables only

Lack of GPU Support

No native support of tensor variables

 \Rightarrow impossible to do deep learning with GRANSO

NCVX Pygranso

1) Auto-Differentiation

Orthogonal Dictionary Learning (ODL)

$$\min_{\boldsymbol{q} \in \mathbb{R}^n} f(\boldsymbol{q}) \doteq \frac{1}{m} \|\boldsymbol{q}^{\mathsf{T}} \boldsymbol{Y}\|_1, \quad \text{s.t.} \|\boldsymbol{q}\|_2 = 1$$

Demo 1: GRANSO for ODL

Demo 2: PyGRANSO for ODL

NCVX Pygranso

2) GPU acceleration for large scale problems

Orthogonality-constrained RNN

GPU: ~7.2 s for 100 iter

PyGRAM	PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation									
Versio	Version 1.2.0									
Licens	Licensed under the AGPLv3, Copyright (C) 2021-2022 Tim Mitchell and Buyun Liang									
Proble	Problem specifications:									
# of	# of variables : 48010									
# of	# of inequality constraints : 0									
# of	# of equality constraints : 1									
Limite	Limited-memory mode enabled with size = 20.									
NOTE:	NOTE: limited-memory mode is generally NOT									
recom	recommended for nonsmooth problems.									
Iter	< Penal Mu	lty Function> Value	Objective	Total Ineq	Violation Eq	< SD	Line Se Evals	earch> t	<- Stat Grads	ionarity -> Value
$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \end{array}$	100.0000 2.781284 1.077526 0.785517 0.785517 0.785517 0.375710 0.375710 0.221853 0.221853 0.221853	231.110993915 6.15538768205 2.42602824202 1.62062600991 1.45863093500 0.65561089292 0.61366640026 0.33222515702 0.32795759434 2.B = Best (to to	2.31110993915 1.83942004642 1.8519823657 1.86152922129 1.86152922129 1.84741128366 1.74086384511 1.62370589875 1.53948397613 1.49579349213 1.47195631688 Alerance), MF = MC	- - - - - - - - - - - - - - - - - - -	2.20e-14 1.040438 0.430468 0.172018 0.031155 0.007458 0.005551 0.003644 0.0055740 0.001379 0.001399 sible	-	1 3 1 1 1 1 3 3 1	0.000000 4.000000 4.000000 1.000000 1.000000 1.000000 1.000000 4.000000 0.250000 1.000000		70.02796 0.087806 0.009331 0.070584 0.008798 0.021082 0.060758 0.0604978 0.060639 0.007120 0.020357
Optimization results: F 1.47195631688 - 0.001399										
MF	B 2.3110993915 - 2.20e-14 MF 2.31110993915 - 2.20e-14									
Iterat	Iterations: 100									
Funct:	Function evaluations: 148									
PyGRAM	PyGRANSO termination code: 4 max iterations reached.									

CPU: ~17.6 s for 100 iter

PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Version 1.2.0 Licensed under the AGPLv3, Copyright (C) 2021-2022 Tim Mitchell and Buyun Liang								
Problem specifications: # of variables : 48010 # of inequality constraints : 0 # of equality constraints : 1								
Limited-memory mode enabled with size = 20. NOTE: limited-memory mode is generally NOT recommended for nonsmooth problems.								
Iter <pre>< Penalty Function> Mu Value Objective</pre>	< Penalty Function> Total Violation < Line Search> <- Stationarity -> Iter Mu Value Objective Ineq Eq SD Evals t Grads Value							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 - 2.00000 3 - 2.273808 2 - 1.60775 1 - 1.365210 7 - 1.232947 5 - 1.171021 5 - 1.1365210 1 - 1.38926 1 - 1.130730 4 - 1.130740 4 - 1.130740 Most Feasible -	- 1 0.000000 S 2 2.000000 S 2.000000 S S 2.000000 S S 2.000000 S S 2.000000 S S 1.000000 S S 3 4.000000 S 2.000000 S S 1.000000 S S 1.000000 S S 2.000000 S	1 84.45258 1 0.035675 1 0.035562 1 0.122148 1 0.031523 1 0.02276 1 0.02276 1 0.0229037 1 0.002579 1 0.005670 1 0.007645 1 0.003662					
F 0.76665514964 - 1.130942 MF 0.76665514964 - 1.130942								
Iterations: 100 Function evaluations: 182 PyGRANSO termination code: 4 ··· max iterations reached.								
Total Wall Time: 17.56377601623535s								

https://ncvx.org/

objective function
f = (8 * abs(x1**2 - x2) + (1 - x1)**2)

objective function
qtY = q.T @ Y
f = 1/m * torch.norm(qtY, p = 1)

```
# objective function
f = torch.norm(M, p = 'nuc') + eta * torch.norm(S, p = 1)
```

```
adv_inputs = X_struct.x_tilde
epsilon = eps
logits_outputs = model(adv_inputs)
f = -torch.nn.functional.cross_entropy(logits_outputs,labels)
```

Example 1: Support Vector Machine (SVM)

Soft-margin SVM

$$\min_{\boldsymbol{w},b,\zeta} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^n \zeta_i$$

s.t. $y_i \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \ge 1 - \zeta_i, \ \zeta_i \ge 0 \ \forall i = 1, ..., n$

m

```
def comb fn(X struct):
    # obtain optimization variables
    w = X \text{ struct.} w
    b = X \text{ struct.} b
    zeta = X struct.zeta
    # objective function
    f = 0.5*w.T@w + C*torch.sum(zeta)
    # inequality constraints
    ci = pygransoStruct()
    ci.c1 = 1 - zeta - y^*(x_{0w+b})
    ci.c2 = -zeta
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variables
var in = {"w": [d,1], "b": [1,1], "zeta": [n,1]}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

Support Vector Machine

Binary classification (odd vs even digits) on MNIST dataset

Example 2: Orthogonal RNN

```
comb fn(rnn model):
def
    # obtain weights of recurrent kernel
    W hh = list(rnn model.parameters())[1]
    # objective function
    f = CrossEntropyLoss(rnn model(x), y)
    # inequality constraint
    ci = None
    # equality constraints
    ce = pygransoStruct()
    ce.c1 = W hh.T@W hh-torch.eye(hidden size)
    ce.c2 = torch.det(W hh) - 1
    return [f,ci,ce]
 optimization variables is inside "rnn model" (torch.nn)
  pygranso main algorithm
soln = pygranso(rnn model,comb fn)
```

$\min_{\theta} \left(f_{\theta}(x), y \right)$

s.t.
$$\boldsymbol{W}_{hh}^{\intercal} \boldsymbol{W}_{hh} = \boldsymbol{I}; \quad \det(\boldsymbol{W}_{hh}) = 1$$

 W_{hh} is from the weights of recurrent kernel (subvector of heta)

Each layer computes the following function

 $h_t = anh(W_{ih}x_t + b_{ih} + W_{hh}h_{t-1} + b_hh)$

Orthogonal RNN

Compared with:

GeoTorch: A gradient-based manifold optimization method

https://github.com/Lezcano/geotorch

ho Whh	Wy h ₁ Wh	$h \qquad h_2 \qquad W_1$	$hh \rightarrow$
	W_{ih}	W_{ih}	
	x1	x2	

 y_1

1st, 2nd and 3rd row of the 28X28 image

y2

Y3

Wy

 W_{ih}

...

	Train accuracy	Test accuracy
GeoTorch	93.75%	88.60%
PyGRANSO	94.80%	89.10%

Example 3: Robustness—max formulation

$$\max_{\boldsymbol{x}'} \quad \ell(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')) \\ \text{s.t.} \quad d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon \\ \boldsymbol{x}' \in [0, 1]^n$$

def comb fn(X struct): # obtain optimization variables x prime = X struct.x prime # objective function f = loss func(y, f theta(x prime)) # inequality constraints ci = pygransoStruct() ci.cl = d(x, x prime) - epsilonci.c2 = -x primeci.c3 = x prime-1# equality constraint ce = None return [f,ci,ce] # specify optimization variable (tensor) var in = {"x prime": list(x.shape)} # pygranso main algorithm soln = pygranso(var in,comb fn)

Robustness: max formulation

robust accuracy:

 $\min_{\boldsymbol{\theta}} \quad \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})} \max_{\substack{\boldsymbol{x}':d(\boldsymbol{x},\boldsymbol{x}') \leq \epsilon \\ \boldsymbol{x}' \in [0,1]^n}} \quad \ell(\boldsymbol{y},f_{\boldsymbol{\theta}}(\boldsymbol{x}'))$

lower means more effective attack

			AP	GD	PWC	F(ours)	Square	APGD+
Dataset	Model - Attack	Clean	CE	Μ	CE	Μ	M	PWCF
CIFAR10	P_1 [63] - $_{\ell_1(12)}$	73.3	0.96	0.00	28.6	0.00	2.28	0.00
	WRN-70-16 [64] - _{l2(0.5)}	94.7	81.8	81.1	81.8	81.0	87.9	80.8
	WRN-70-16 [64] - $\ell_{\infty}(0.03)$	90.8	69.4	68.0	73.6	72.8	71.6	67.1
ImageNet100	PAT-Alex [12] - $\ell_{2}(4.7)$	75.0	42.7	44.0	42.8	44.5	63.1	40.9
3005	PAT _{-Alex} [12] - $\ell_{\infty}(0.016)$	75.0	48.0	48.2	56.6	48.8	59.9	45.2

Results taken from: Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, Ju Sun. On Optimization and Optimizers in Adversarial Robustness (tentative). In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Example 4: Robustness—min formulation

$$\begin{split} \min_{\boldsymbol{x}'} & d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} & \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ & \boldsymbol{x}' \in [0, 1]^n \end{split}$$

def comb fn(X struct): # obtain optimization variables x prime = X struct.x prime # objective function f = d(x, x prime)# inequality constraints ci = pygransoStruct() f theta all = f theta(x prime) fy = f theta all[:,y] # true class output # output execpt true class fi = torch.hstack((f theta all[:,:y],f theta all[:,y+1:])) ci.cl = fy - torch.max(fi) ci.c2 = -x primeci.c3 = x prime-1# equality constraint ce = Nonereturn [f.ci.ce] # specify optimization variable (tensor) var in = {"x prime": list(x.shape)} # pygranso main algorithm soln = pygranso(var in,comb fn)

Robustness: min formulation

CIFAR10 dataset

Compared with FAB [iterative constraint linearization + projected gradient] https://github.com/fra31/auto-attack
$$\begin{split} \min_{\boldsymbol{x}'} & d(\boldsymbol{x}, \boldsymbol{x}') \\ \text{s.t.} & \max_{\ell \neq c} f_{\boldsymbol{\theta}}^{\ell}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{c}(\boldsymbol{x}') \\ & \boldsymbol{x}' \in [0, 1]^n \end{split}$$

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack

L2 attack

Linf attack

• Constraint folding

Equality into non-negative inequality

Inequality into nonnegative inequality

 $c(x) = 0 \iff |c(x)| \le 0$ $c(x) \le 0 \iff \max(c(x), 0) \le 0$

All non-negative inequalities into one

$$c_1(x) \leq 0, \ldots, c_k(x) \leq 0 \iff \|[c_1(x), \ldots, c_k(x)]\|_2 \leq 0$$

• Reduce # constraints

- Reduce cost of QP in the SQP
- Reduce cost of AD

Enabled by NCVX's ability to handle nonsmoothness

Reformulation

• Fold constraints into DNNs

Summary

A solver for constrained, nonsmooth deep learning problems

- Auto-differentiation
- GPU support
- Tensor variable support

Practical tricks to speed up

- Constraint folding (into a single one)
- Objective and constraint rescaling
- Reformulation
- Build constraints into DNNs

Next steps

- Autoscaling
- Stochastic objective

References

• NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

Buyun Liang, Tim Mitchell, Ju Sun. 2021 https://arxiv.org/abs/2111.13984

• NCVX: A General-Purpose Optimization Solver for Machine Learning, and Practical Tricks.

Buyun Liang, Tim Mitchell, Ying Cui, <u>Ju Sun</u>. In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

• On Optimization and Optimizers in Adversarial Robustness (tentative). Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, <u>Ju Sun</u>. In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.