Practical Phase Retrieval Using Double Deep Image Prior(s) Ju Sun Computer Science & Engineering, UMN

Computational Imaging XXI @ Electronic Imaging Jan 17, 2023

Collaborators:

Zhong Zhuang (ECE, UMN)

David Barmherzig CCM, Flatiron Ins.

Felix Hofmann DES, Oxford U.

David Yang DES, Oxford U.

Visual inverse problems

Image denoising

Image super-resolution

3D reconstruction

MRI reconstruction

Coherent diffraction imaging (CDI)

Solving inverse problems by regularized data-fitting

Inverse problem: given $\mathbf{y} = f(\mathbf{x})$, recover \mathbf{x}

$$\min_{\mathbf{x}} \underbrace{\ell(\mathbf{y}, f(\mathbf{x}))}_{\text{data fitting}} + \lambda \underbrace{R(\mathbf{x})}_{\text{regularizer}} \text{ RegFit}$$

Limitations:

- Which ℓ ? (e.g., unknown/compound noise)
- Which R? (e.g., structures not amenable to math description)
- Speed

Plugging in Deep Image Prior (DIP)

Ulyanov et al. Deep image prior. IJCV'20. https://arxiv.org/abs/1711.10925

DIP's cousin(s)

Deep image prior (DIP)

 $\mathbf{x} pprox G_{ heta}\left(\mathbf{z}
ight) = G_{ heta}$ (and \mathbf{z}) trainable

Idea: (visual) objects as continuous functions

Neural implicit representation (NIR)

 $\mathbf{x} \approx \mathcal{D} \circ \overline{\mathbf{x}} \qquad \mathcal{D}: ext{discretization} \quad \overline{\mathbf{x}}: ext{ continuous function}$

Physics-informed neural networks (PINN)

Figure credit: https://www.nature.com/articles/s42254-021-00314-5

Successes of DIP

denoising/inpainting/super-resol/deJEPG/...

https://dmitryulyanov.github.io/deep_image_prior

취직히면 노동조합 기원

DeblurGAN-v2

SelfDeblur

SelfDeblur

Our

Our Blind image deblurring (blind deconvolution)

Ren et al. Neural Blind Deconvolution Using Deep Priors. CVPR'20. https://arxiv.org/abs/1908.02197

Zhuang et al. Blind Image Deblurring with Unknown Kernel Size and

Substantial Noise. https://arxiv.org/abs/2208.09483

NIR for 3D rendering and view synthesis

https://www.matthewtancik.com/nerf

Phase Retrieval

Which phase retrieval?

$oldsymbol{Y} = |\mathcal{A}(oldsymbol{X})|^2$ Consider $\min_{oldsymbol{X}} \|\sqrt{oldsymbol{Y}} - |\mathcal{A}(oldsymbol{X})|\|_F^2$

	Gaussian PR	Fresnel PR	Fraunhofer PR
$\mathcal{A}(oldsymbol{X})$	$\{\langle oldsymbol{G}_i,oldsymbol{X} angle\}_{i=1}^m$	$\left \mathcal{F}(oldsymbol{X}\odot[e^{i\pi C(m^2+n^2)}]_{m,n}) ight $	$\mathcal{F}(oldsymbol{X})$
Symmetries	Global phase	Global phase	Shift, flipping, global phase
LS-solvable			
10 International International	-1 -3 -5 0 50 100	$10^{-1} \\ 10^{-3} \\ 10^{-3} \\ 10^{-5} \\ 10^{-5} \\ 0 \\ 50 \\ 100 \\$	0^{-1} 0^{-3} 0^{-5} 0 50 100

Focus here: plane-wave CDI (Fraunhofer PR) $Y = |\mathcal{F}(X)|^2$

 ${f X}$ complex-valued

Three symmetries:

- global phase
- conjugate flipping

• shift

Limitations of SOTA methods on PR

Global issues

- Sensitivity to initial support estimation
- Sensitivity to multiple hyperparameters (e.g., Coherent Diffraction Imaging HIO+ER+Shrikwrap) (CDI)
- Low reconstruction quality (e.g., phases with singularities in BCDI)

Local issues

- Beamstop (i.e., missing data)
- Shot noise

Bragg Coherent Diffraction Imaging (BCDI)

PR using a single DIP

Double DIPs $\min_{X \in \mathbb{C}^{n \times n}} \|\sqrt{Y} - |\mathcal{F}(X)|\|_F^2$ improve the performance

Reparameterizing X using two DIPs—to reflect the asymmetry in complexity and constraints

$$\boldsymbol{X} = \boldsymbol{X}^{mag} e^{1j * \boldsymbol{X}^{phase}} = G_{\theta_1}^{mag} \left(z_1 \right) e^{1j * G_{\theta_2}^{phase} \left(z_2 \right)}$$

e.g., for BCDI on crystals, magnitude known to be uniform

OR
$$X = X^{real} + 1j * X^{imag} = G_{\theta_1}^{real}(z_1) + 1j * G_{\theta_2}^{imag}(z_2)$$

e.g., for CDI on certain bio-specimen, real part **known to be nonnegative**

X half of the size of Y in any dimension: no tight support needed, and information-theoretic limit. No shrinkwrap!

Zhuang et al. Practical Phase Retrieval Using Double Deep Image Priors https://arxiv.org/abs/2211.00799

Results on simulated 2D crystal data No training data!

Results on simulated 2D crystal data

Metric:

symmetry-adjusted MSE Evaluation data:

50 samples

Results on 2D living cell data

CXIDB 26

Results on simulated 3D data

Results on realistic 3D crystal data

slices from different views

Our

HIO+ER with Shrinkwrap

Blind image deblurring

Also known as Blind Deconvolution

Zhuang et al. Blind Image Deblurring with Unknown Kernel Size and Substantial Noise. <u>https://arxiv.org/abs/2208.09483</u>

Practical challenges:

- 1) Unknown kernel size
- 2) Substantial noise
- 3) Model stability

Idea: parameterize both \boldsymbol{k} and \boldsymbol{x} as DIPs

Plus: several careful modifications

Symmetries issues in data-driven DL methods

Inverse problem: given $\mathbf{y}\,=\,f(\mathbf{x})$, recover \mathbf{x}

Learn the f^{-1} with a training set $\{(\mathbf{y}_i,\,\mathbf{x}_i)\}$

Example: learning the sqrt function

Present for any inverse problems with forward symmetries, e.g., all PR problems

- Tayal et al. Inverse Problems, Deep Learning, and Symmetry Breaking. https://arxiv.org/abs/2003.09077
- Manekar et al. **Deep Learning Initialized Phase Retrieval.** <u>https://openreview.net/forum?id=gv4I5IfJHP</u>
- Tayal er al. Unlocking Inverse Problems Using Deep Learning: Breaking
 Symmetries in Phase Retrieval. <u>https://openreview.net/forum?id=oyhGlytV1S</u>

Thanks!

Zhong is on the job market for a postdoctoral position

Zhong Zhuang (ECE, UMN)