What's scary about deep learning?

Ju Sun, PhD Assistant Professor Department of Computer Science & Engineering Department of Neurosurgery

March 19, 2021

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

Brain neural networks

Credit: Max Pixel

Brain neural networks

Credit: Max Pixel

Artificial neural networks

Brain neural networks

Credit: Max Pixel

Artificial neural networks

Why called artificial?

- (Over-)simplification on neural level
- (Over-)simplification on connection level

Key ingredients of DL have been in place for 25-30 years:

Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's
CTF	DARPA etc	mid 1980's

Key ingredients of DL have been in place for 25-30 years:

Landmark	Emblem	Epoch
Neocognitron	Fukushima	1980
CNN	Le Cun	mid 1980s'
Backprop	Hinton	mid 1980's
SGD	Le Cun, Bengio etc	mid 1990's
Various	Schmidhuber	mid 1980's
CTF	DARPA etc	mid 1980's

data + specialized hardware + specialized software

DL leads to many things ...

Revolution: a great change in conditions, ways of working, beliefs, etc. that affects large numbers of people – from the Oxford Dictionary

Terrence Sejnowski (Salk Institute)

Academic breakthroughs

image classification

Academic breakthroughs

image classification

speech recognition credit: IBM

Academic breakthroughs

image classification

Go game (2017)

speech recognition credit: IBM

Academic breakthroughs

image classification

Go game (2017)

speech recognition credit: IBM

image generation credit: I. Goodfellow

Commercial breakthroughs ...

self-driving vehicles credit: wired.com

Commercial breakthroughs ...

self-driving vehicles credit: wired.com smart-home devices credit: Amazon

Commercial breakthroughs ...

self-driving vehicles credit: wired.com

smart-home devices credit: Amazon

healthcare credit: Google AI

Commercial breakthroughs ...

amazon

self-driving vehicles credit: wired.com

healthcare credit: Google AI

smart-home devices credit: Amazon

robotics credit: Cornell U.

Papers are produced at an overwhelming rate

Papers are produced at an overwhelming rate

Cornell University	the grantury accounted on support tran- the Simons Foundation and member institutions.	140000	afin+econ abio
arXiv.org > cs > cs.LG	Search Alt fields v Search Help (Advanced Search	120000	
Machine Learning		110000	physics+gr-qc+relin+mucl+quart.ph astro-ph
		90000 ğ	- Np ³
Authors and titles for recent submissions		§ 80003	
Tue, 18 Jun 2019 May 2019		5 70000 ·	
Fit, 14 Jun 2019		R 60000	
Thu, 13 Jun 2019 Weit 12 Jun 2019		a 50000	
1000 (458 wave 1 458)		40000	
showing 438 entries (RE) (age: Terrer norm		30000	
Fue, 18 Jun 2019		20000	
3] arXiv:1906.07153 [pdf, other]		10000	
Adversaniai attacks on Copyright Detection Systems Panas Saadspaneh, All Shafah, Ton Geldetern Sutjects: Medhine Learning (cs.LG); Cryptography and Security (cs.CR); Machine Learning (stat ML)		0	*****

image credit: arxiv.org

$400 \times 0.8 \times 52/140000 \approx 11.9\%$

DL Supremacy!?

Turing Award 2018 credit: ACM.org

Turing Award 2018 credit: ACM.org

Citation: For conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing. esp. for academic researchers ...

It's working amazingly well, but we don't understand why

First, a few words about deep learning to put our discussion into perspective. Neural networks have been around for decades, proposing a universal learning mechanism that could, in principle, fit to any learnable data source. In the food forwards destinction, then of perspective and the source of the perspective workshotd transmission.

DL leads to new sciences

chemistry

astronomy

social science

DL leads to money

Div vield

Prev close

0.26%

249.28

247.80

249.00

- Funding
- Investment
- Job opportunities

Open

High

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

Hype?

Elon Musk says full self-driving Tesla tech 'very close'

() 9 July 2

Tesla will be able to make its vehicles completely autonomous by the end of this year, founder Elon Musk has said.

BBC.com

Hype?

Elon Musk says full self-driving Tesla tech 'very close'

<

Tesla will be able to make its vehicles completely autonomous by the end of this year, founder Elon Musk has said.

BBC.com

Forbes

Why Is Tesla's Full Self-Driving Only Level 2 Autonomous?

James Morris Contributor © ④ Green Tech

write about the rapidly growing world of electric vehicles

- f The Tesla miracle isn't just about making electric vehicles practical and desirable replacements for fossil fuel cars. Alongside the
- leading battery and motor technologies have been bold claims by Elon Musk that his cars will be the first you can buy that completely drive themselves too. A trial of Tesla's Full Self Driving ability has been making its way round a few US cities carrying selected beta-testing Tesla owners since October 2020. But recently

SYNOPSYS'

LEVELS OF DRIVING AUTOMATION

How it works?

How it works?

How robust?

How robust?

FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'.

Robustness to natural variations?

ImageNet-C Leaderboard

ImageNet-C Robustness with a ResNet-50 Backbone trained on ImageNet-1K and evaluated on 224x224x3 images.

Method	Reference	Standalone?	mCE	Clean Error
DeepAugment+AugMix	Hendrycks et al.	No	53.6%	24.2%
Assemble-ResNet50	Lee et al.	No	56.5%	17.90%
ANT (3x3)	Rusak and Schott et al.	Yes	63%	23.9%

18/40

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

Put DL into good use

solve difficult scientific and engineering problems

chemistry

social science

Inverse problems: given f and $\boldsymbol{y} = f(\boldsymbol{x})$, estimate \boldsymbol{x}

symmetries/ill-posedness in practical problems

Lots of suboptimal practical usage...

e.g., phase retrieval: given $oldsymbol{Y} = \left|\mathcal{F}\left(oldsymbol{X}
ight)
ight|^2$, recover $oldsymbol{X}$

/	/	/ /	/ /	/ /
2	2	2 2	22	2
0	0	00	00	9 🖸
7	7	7	7 4	L 🚺
9	9	9 🧳	9 🕏	9
6	6	6	6	6
3	3	3 🐧	8 3	દ્
Ч	Ч	4 🧤	h 4	4 🜑
5	5	5 5	55	5
8	8	8 /	8 8	8
	(a)	(b)	(c)	(d)
No	Symmetry	Shift symmetry	Flipping symmetry	Shift and Flipping
	-			symmetries

22 / 40

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

I heard reiteration of the following claim: Complex theories do not work; simple algorithms do.

I would like to demonstrate that in the area of science a good old principle is valid: Nothing is more practical than a good theory.

 Vladimir N Vapnik, who invented support vector machines and statistical learning theory

Insights from randomness?

(Fourier) phase retrieval:

For a complex signal $x \in \mathbb{C}^n$, given $|\mathcal{F}x|^2$, recover x.

Insights from randomness?

(Fourier) phase retrieval:

For a complex signal $x \in \mathbb{C}^n$, given $|\mathcal{F}x|^2$, recover x.

Generalized phase retrieval:

For a complex signal $x \in \mathbb{C}^n$, given $|\mathcal{A}x|^2$ where \mathcal{A} contains randomness, recover x.

Insights from randomness?

(Fourier) phase retrieval:

For a complex signal $x \in \mathbb{C}^n$, given $|\mathcal{F}x|^2$, recover x.

Generalized phase retrieval:

For a complex signal $x \in \mathbb{C}^n$, given $|\mathcal{A}x|^2$ where \mathcal{A} contains randomness, recover x.

 $m{y} = |m{a}_i^* m{x}|$ for $i = 1, \dots, m$ where $m{a}_i$'s complex Gaussian vectors

 $oldsymbol{y} = |oldsymbol{a}_i^*oldsymbol{x}|$ for $i=1,\ldots,m$ where $oldsymbol{a}_i$'s complex Gaussian vectors

 many beautiful mathematical results [Chi et al., 2018, Fannjiang and Strohmer, 2020]

 $oldsymbol{y} = |oldsymbol{a}_i^*oldsymbol{x}|$ for $i=1,\ldots,m$ where $oldsymbol{a}_i$'s complex Gaussian vectors

 many beautiful mathematical results [Chi et al., 2018, Fannjiang and Strohmer, 2020]

Example 1: a beautiful init + local descent result

 $oldsymbol{y} = |oldsymbol{a}_i^*oldsymbol{x}|$ for $i=1,\ldots,m$ where $oldsymbol{a}_i$'s complex Gaussian vectors

 many beautiful mathematical results [Chi et al., 2018, Fannjiang and Strohmer, 2020]

Example 2: my own results

$$\min_{\boldsymbol{z}\in\mathbb{C}^n} f(\boldsymbol{z}) \doteq \frac{1}{2m} \sum_{k=1}^m (y_k^2 - |\boldsymbol{a}_k^*\boldsymbol{z}|^2)^2.$$

Theorem ([Sun et al., 2016])

When a_k 's generic and m large, with high probability

all local minimizers are global, all saddles are nice.

I was happy until ...

I was happy until ...

Take-home messages

James R Fienup (U. Rochester) I find it interesting people have tried to analyze Gaussian phase retrieval. —Fineup

Take-home messages

James R Fienup (U. Rochester) I find it interesting people have tried to analyze Gaussian phase retrieval. —Fineup

Beautiful mathematical results gathered so far [Chi et al., 2018, Fannjiang and Strohmer, 2020]

Take-home messages

James R Fienup (U. Rochester) I find it interesting people have tried to analyze Gaussian phase retrieval. —Fineup

Beautiful mathematical results gathered so far [Chi et al., 2018, Fannjiang and Strohmer, 2020]

But we made little progress in solving Fourier PR

COLLOQUIUM ON THE SCIENCE OF DEEP LEARNING

Theoretical issues in deep networks

Tomaso Poggio, Andrzej Banburski, and Qianli Liao

+ See all authors and affiliations

PNAS December 1, 2020 117 (48) 30039-30045; first published June 9, 2020; https://doi.org/10.1073 /pnas.1907369117

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved May 1, 2020 (received for review June 3, 2019)

Abstract

While deep learning is successful in a number of applications, it is not yet well

Theories for DL?

CSCI8980: Topics in modern machine learning (Fall 2021)

--put classic statistical learning theory in the context of modern deep learning, and put deep learning in the context of classic statistical learning theory

- Approximation theory for DL
- Optimization & Generalization
 - Classic theory: uniform convergence, VC-dim, <u>Radamachar</u> complexity, PAC-Bayesian bound, margin-based (¹/₃)
 - DL: implicit regularization, objection to implicit regularization, double descent
 - Generalization bounds for deep learning https://arxiv.org/abs/2012.04115
 - Understanding Deep Learning (Still) Requires Rethinking Generalization https://dl.acm.org/doi/pdf/10.1145/3446776
 - Generative prior: DIP and variants
 - Neural tangent kernels, lazy training
 - Robustness, interpretability, explainability, fairness, privacy, causality
 - Towards Causal Representation Learning https://arxiv.org/abs/2102.11107
 - Learning with imbalance and label noise
 - Early-Learning Regularization Prevents Memorization of Noisy Labels https://arxiv.org/abs/2007.00151
 - Learning with symmetries --- input (invariance & equivariance) & output
 - Landscape analysis (Batch normalization)
 - Why Flatness Correlates With Generalization For Deep Neural Networks <u>https://arxiv.org/abs/2103.06219</u>
 - Transfer learning & Domain adaptation
 - Self-supervised learning (contrastive learning)
 - Generative models (Normalization flow, GANs & VAE)
 - Use DL for solving hard problems (Maxcut, combinatorial problems, FPR)
 - 2nd order methods for DL (classification, inverse problems, etc)
- Scattering transform
- Randomized numerical linear algebra & concentration of measure: dimension reduction, sketched-based optimization

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

We're running short of doctors!

Projected Physician Shortages by 2033

Medical Areas	Shortage Range
Primary care	Between 21,400 and 55,200 physicians
Nonprimary care specialties	Between 33,700 and 86,700 physicians
- Surgical specialties	Between 17,100 and 28,700 physicians
- Medical specialties	Between 9,300 and 17,800 physicians
- Other specialties (i.e., pathology, radiology, psychiatry)	Between 17,100 and 41,900 physician

Source: Assoc. American Medical Colleges

Perils and promise

Perils

- Small datasets (sometimes)
- Unbalanced datasets (almost always)
- Noisy datasets (almost always)

Perils and promise

Perils

- Small datasets (sometimes)
- Unbalanced datasets (almost always)
- Noisy datasets (almost always)

Promise

- Confined domain

- Robustness - noise less wild

What we're up to

COVID-19 Diagnosis and Prognosis (deployed in 12 M Health Fairview H's)

Collaborative/federated learning for medical imaging

Fracture detection in critical/trauma care

What's good about deep learning?

Why are self-driving cars not delivered?

Are we making the best use of deep learning?

What about understanding DL?

Why AI for healthcare now?

Research of the SUN group

$\rm RL \times \rm NCVX$

{machine learning, data sciences, optimization, computer vision, image/signal processing, imaging, healthcare...}

- Representation Learning: learn efficient representation for data
- Computation: compute with, often optimize with, massive amounts of data
- Theory insights: whenever possible/necessary

- foundations of machine/deep learning & computer vision
 - * robustness in recognition
 - * novel applications and limitations
 - * fast computation and theoretical insights

- foundations of machine/deep learning & computer vision
 - * robustness in recognition
 - * novel applications and limitations
 - * fast computation and theoretical insights
- application of CV and DL in healthcare
 - * diagnosis and analysis of gliobastoma via brain MRI
 - * fracture/COVID 19 detection from chest X-rays/CT
 - * federated learning

CSCI8980: Topics in modern machine learning (Fall 2021)

--put classic statistical learning theory in the context of modern deep learning, and put deep learning in the context of classic statistical learning theory

- Approximation theory for DL
- Optimization & Generalization
 - Classic theory: uniform convergence, VC-dim, <u>Radamachar</u> complexity, PAC-Bayesian bound, margin-based (1/3)
 - DL: implicit regularization, objection to implicit regularization, double descent
 - Generalization bounds for deep learning https://arxiv.org/abs/2012.04115
 - Understanding Deep Learning (Still) Requires Rethinking Generalization https://dl.acm.org/doi/pdf/10.1145/3446776
 - Generative prior: DIP and variants
 - Neural tangent kernels, lazy training
 - Robustness, interpretability, explainability, fairness, privacy, causality
 - Towards Causal Representation Learning https://arxiv.org/abs/2102.11107
 - Learning with imbalance and label noise
 - Early-Learning Regularization Prevents Memorization of Noisy Labels https://arxiv.org/abs/2007.00151
 - Learning with symmetries --- input (invariance & equivariance) & output
 - Landscape analysis (Batch normalization)
 - Why Flatness Correlates With Generalization For Deep Neural Networks https://arxiv.org/abs/2103.06219
 - Transfer learning & Domain adaptation
 - Self-supervised learning (contrastive learning)
 - Generative models (Normalization flow, GANs & VAE)
 - Use DL for solving hard problems (Maxcut, combinatorial problems, FPR)
 - 2nd order methods for DL (classification, inverse problems, etc)
- Scattering transform
- Randomized numerical linear algebra & concentration of measure: dimension reduction, sketched-based optimization
- Graph neural networks/NN on non-Euclidean spaces

- [Candès et al., 2015] Candès, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval from coded diffraction patterns. Applied and Computational Harmonic Analysis, 39(2):277–299.
- [Chi et al., 2018] Chi, Y., Lu, Y. M., and Chen, Y. (2018). Nonconvex optimization meets low-rank matrix factorization: An overview. *arXiv:1809.09573*.
- [Fannjiang and Strohmer, 2020] Fannjiang, A. and Strohmer, T. (2020). The numerics of phase retrieval. arXiv:2004.05788.

[Sun et al., 2016] Sun, J., Qu, Q., and Wright, J. (2016). A geometric analysis of phase retreival. arXiv preprint arXiv:1602.06664.