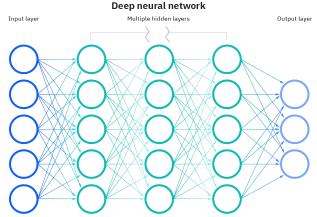
Three Pillars of Health Data Science Transfer Learning, Federated Learning, and Imbalanced Learning

Ju Sun, PhD Computer Science & Engineering Jan 12, 2023

(Machine) Learning, (Numerical) Optimization, (Computer) Vision, healthcarE, +X



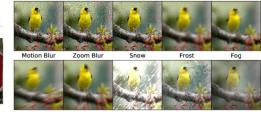
Our research themes

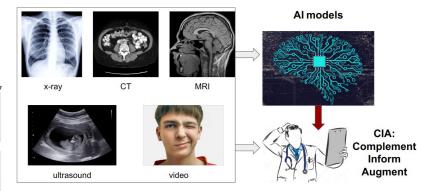
FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

STOP + STOP

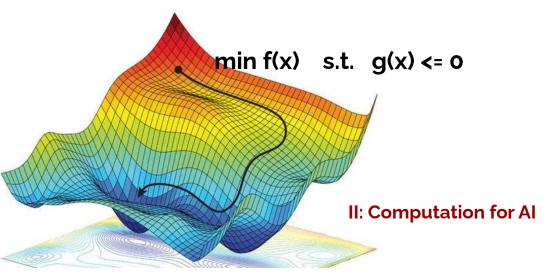
Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

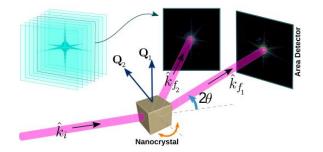




I: Trustworthy AI

III: AI for Healthcare





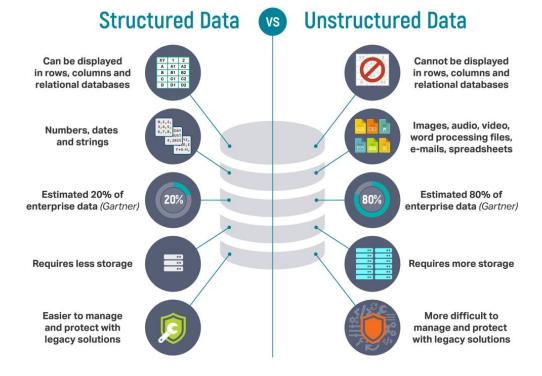
IV: AI for Science and Engineering

Thanks to

Thanks to

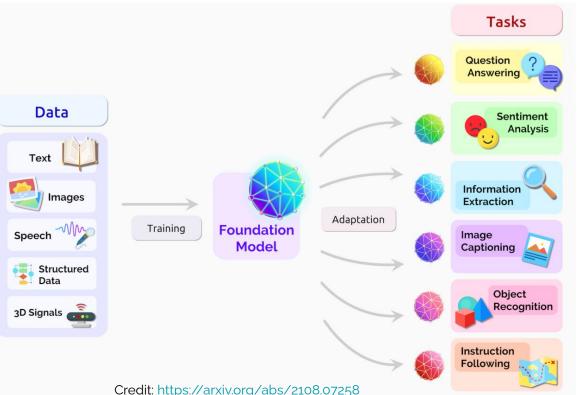
Le Peng (CS&E, PhD)

Deep learning is mostly for unstructured data



- Structured data directly go to classical MLDS tools
- Success of modern DL lies in representation learning

Deep learning is data-hungry

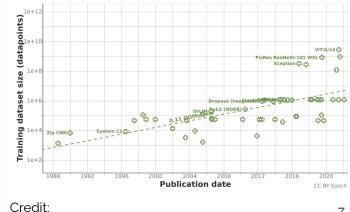


NLP models

Year	Model	# of Parameters	Dataset Size
2019	BERT [39]	3.4E+08	16GB
2019	DistilBERT [113]	6.60E+07	16GB
2019	ALBERT [70]	2.23E+08	16GB
2019	XLNet (Large) [150]	3.40E+08	126GB
2020	ERNIE-GEN (Large) [145]	3.40E+08	16GB
2019	RoBERTa (Large) [74]	3.55E+08	161GB
2019	MegatronLM [122]	8.30E+09	174GB
2020	T5-11B [107]	1.10E+10	745GB
2020	T-NLG [112]	1.70E+10	174GB
2020	GPT-3 [25]	1.75E+11	570GB
2020	GShard [73]	6.00E+11	-
2021	Switch-C [43]	1.57E+12	745GB

Credit: https://dl.acm.org/doi/10.1145/3442188.3445922

CV models



https://epochai.org/blog/trends-in-training-dataset-sizes

Deep learning is data-picky

The Stanford Question Answering Dataset

GLUE

The General Language Understandi resources for training, evaluating, and a consists of:

What is COCO?

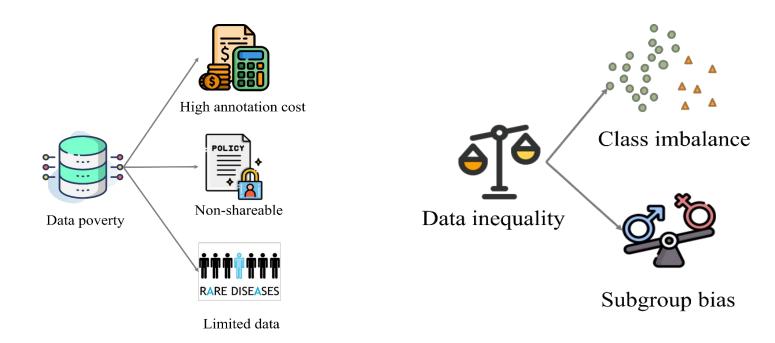
F & X ± 4

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

Object segmentation Recognition in context Superpixel stuff segmentation 330K images (>200K labeled) 1.5 million object instances 80 object categories 91 stuff categories 5 captions per image 250,000 people with keypoints

Need well-curated datasets for training and evaluation

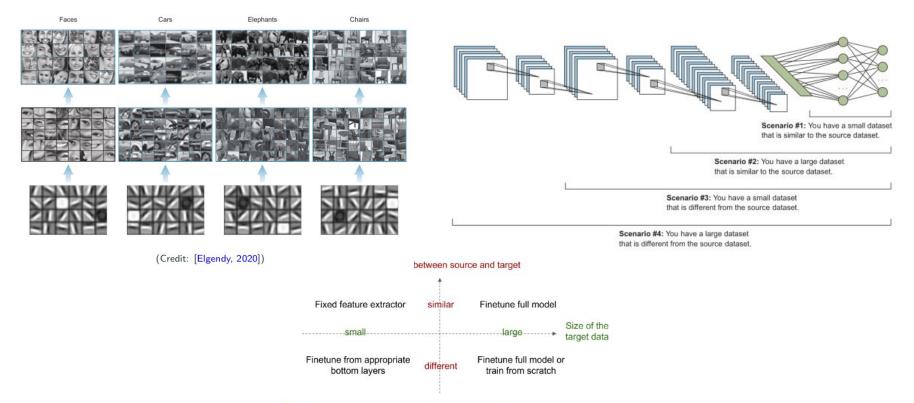
Data poverty and inequality (DPI) in healthcare



Outline

- Addressing data poverty—transfer learning
- Addressing data poverty—federated learning
- Addressing data inequality—imbalanced learning
- Perspective: toward human-in-the-loop health data science

Addressing data poverty—transfer learning



Truncated transfer learning (TTL)

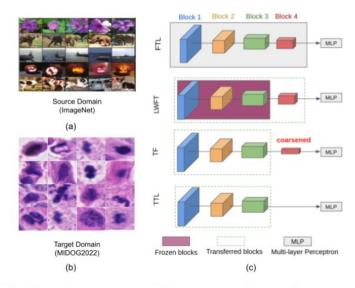


Fig. 3. Overview of typical TL setup, and the four TL methods that we focus on in this paper. (a) TL source domain: e.g., ImageNet object recognition; (b) TL target domain: e.g., mitotic cells classification; (c) Four TL methods: FTL, LWFT, TF, our TTL applied to ResNet50 pretrained on ImageNet.

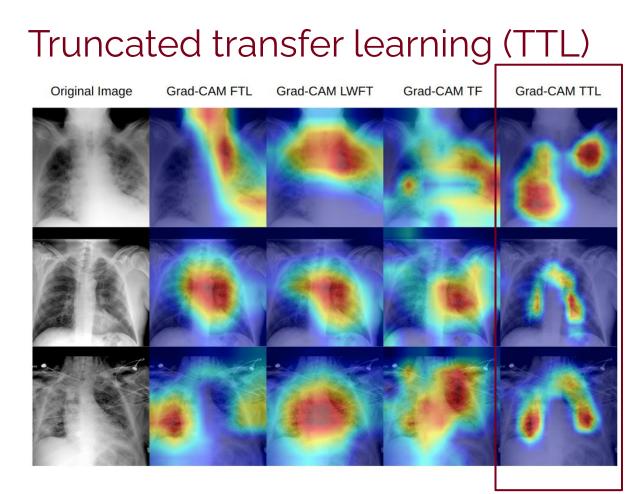
Rethinking Transfer Learning for Medical Image Classification

Le Peng, Hengyue Liang, Gaoxiang Luo, Taihui Li, Ju Sun https://arxiv.org/abs/2106.05152

3D PULMONARY EMBOLISM CLASSIFICATION WITH DIFFERENT TL STRATEGIES. THE BEST RESULT OF EACH COLUMN IS COLORED IN **RED**. ↑ INDICATES LARGER VALUE IS BETTER AND ↓ INDICATES LOWER VALUE IS BETTER. "-1" MEANS WITH THE BLOCK-WISE SEARCH ONLY, AND "-2" MEANS WITH THE TWO-STAGE BLOCK-LAYER HIERARCHICAL SEARCH. NOTE THAT THE RUN TIME FOR THIS TABLE IS IN SECONDS, NOT MILLISECONDS.

Method	AUROC↑	AUPRC↑	Params(M)↓	$MACs(G) {\downarrow}$	CPU(s)↓	GPU(s)↓
PENet	0.822 ± 0.010	0.855 ± 0.007	28.4	51.7	1.50	1.59e-2
FTL	0.821 ± 0.010	0.867 ± 0.006	47.5	66.3	1.44	1.96e-2
TF-1	0.849 ± 0.020	0.886 ± 0.017	36.1	64.9	1.41	1.93e-2
LWFT-1	0.817 ± 0.005	0.855 ± 0.003	47.5	66.3	1.44	1.96e-2
TTL-1	0.854 ± 0.013	0.889 ± 0.015	26.11	60.17	1.32	1.68e-2
TF-2	0.849 ± 0.020	0.886 ± 0.017	36.1	64.9	1.41	1.93e-2
LWFT-2	0.835 ± 0.038	0.870 ± 0.028	47.5	66.3	1.44	1.96e-2
TTL-2(ours)	0.854 ± 0.013	0.889 ± 0.015	26.11	60.17	1.32	1.68e-2

Smaller DNN model, boosted performance!



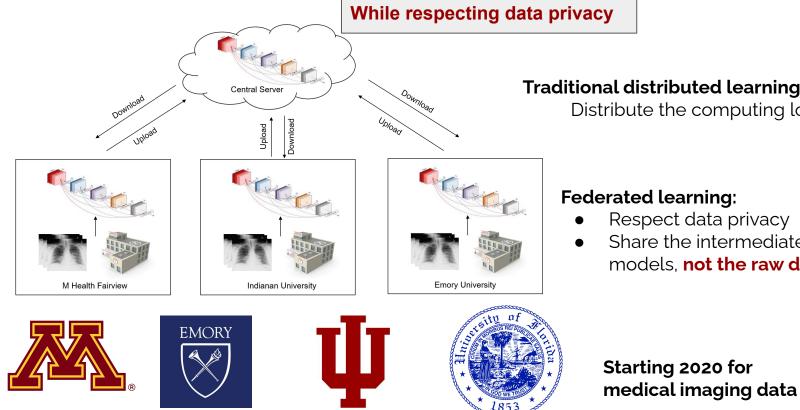
For COVID-19 prediction:

TTL correctly focuses more on texture (lesion) in the lung area!

Outline

- Addressing data poverty—transfer learning
- Addressing data poverty—federated learning
- Addressing data inequality—imbalanced learning
- Perspective: toward human-in-the-loop health data science

Addressing data poverty—federated learning



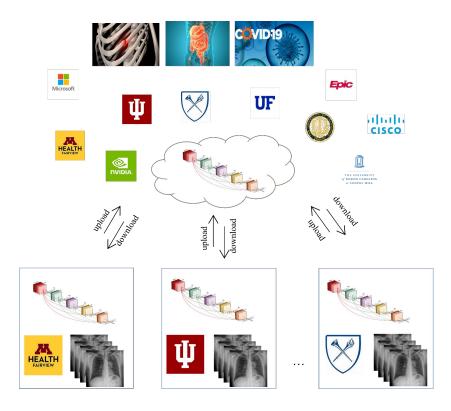
Traditional distributed learning:

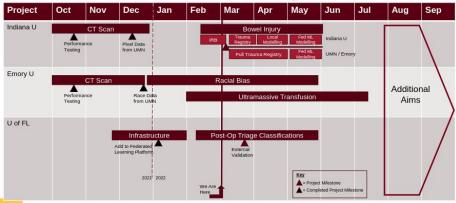
Distribute the computing loads

Federated learning:

- Respect data privacy
- Share the intermediate MLDS models. not the raw data

Our medical CV federation





Status of our CV federation

- (UMN) COVID-19 detection (UF, Emory, IU and MHealth Fairview)
- (Emory) Racial Bias study (Emory, IU and Mhealth Fairview)
- (UMN) RibFrac detection (Emory, IU and Mhealth Fairview)

FL COVID-19 detection

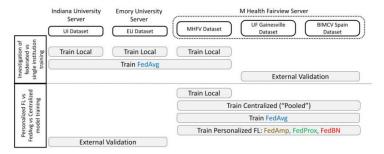


Figure 1. Schematic representation of the available datasets and the analysis conducted for this study. IU: Indiana University; EU: Emory University; MHFV: M Health Fairview; UF: University of Florida; BIMCV: Valencian Region Medical ImageBank.

Table 2. Internal and external validation of federated model

		Ν	AUROC	AUPRC	95% CI	Precision	Recall	F1 score
Internal	MHFV	9102	0.951	0.838	0.940-0.963	0.616	0.840	0.711
	IU	3179	0.871	0.886	0.857-0.885	0.828	0.748	0.786
	EU	4051	0.832	0.801	0.813-0.851	0.681	0.784	0.729
External	BIMCV	S 3822	NV960100	Allho	n A585-017-	tide	0.471	0.533
	UF		JW0513GC	Jogsge	neraliza		0.592	0.610

external validation

Table 3. Performance comparison between single institution model (SIM) and federated learning model (FLM)

	AUROC			Sensitivity			Specificity			
	SIM	FLM	P value	SIM	FLM	P value	SIM	FLM	P value	
MHFV	0.944	0.951	.492	0.870	0.840	.020	0.939	0.950	<.05	
BIMCV	0.557	0.601	<.05	0.301	0.471	<.05	0.833	0.730	<.05	
UF	0.667	0.713	<.05	0.548	0.592	<.05	0.721	0.759	<.05	

Note: We use Delong's test to compare the difference of AUROC and McNemar's test to compare specificity and sensitivity.

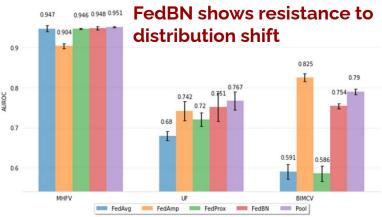
JOURNAL ARTICLE

Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals 3

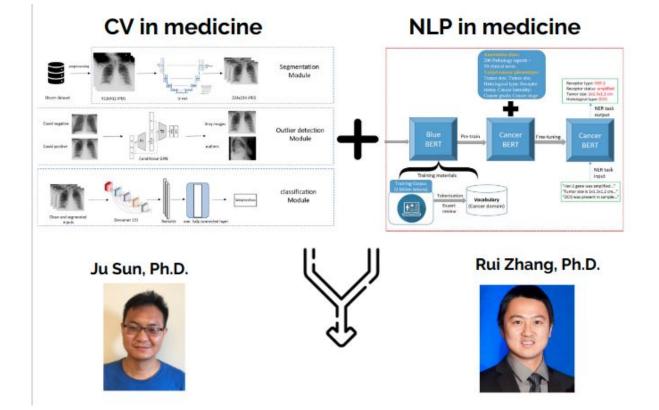
Le Peng, Gaoxiang Luo, Andrew Walker, Zachary Zaiman, Emma K Jones, Hemant Gupta, Kristopher Kersten, John L Burns, Christopher A Harle, Tanja Magoc ... Show more

Journal of the American Medical Informatics Association, ocac188, https://doi.org/10.1093/jamia/ocac188 Published: 20 October 2022 Article history v

Federated learning (Journal of American Medical Informatics Association; 2022)



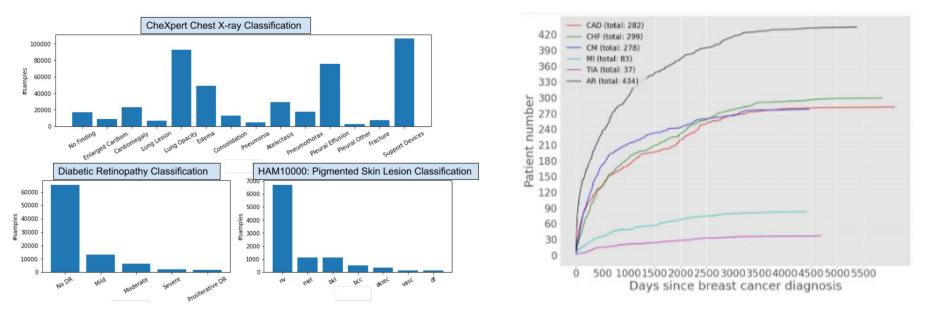
Next: FL for CV + NLP



Outline

- Addressing data poverty—transfer learning
- Addressing data poverty—federated learning
- Addressing data inequality—imbalanced learning
- Perspective: toward human-in-the-loop health data science

Addressing data inequality—imbalanced learning



Imbalanced regression (IR)

Imbalanced classification (IC)

While imbalance learning is challenging?

		Predicted POS	Predicted NEG	
ľ	POS	70	30	
	NEG	1000	9000	

 Accuracy:
 9070/10100 = 0.898

 True Positive Rate (Sensitivity, Recall):
 0.7

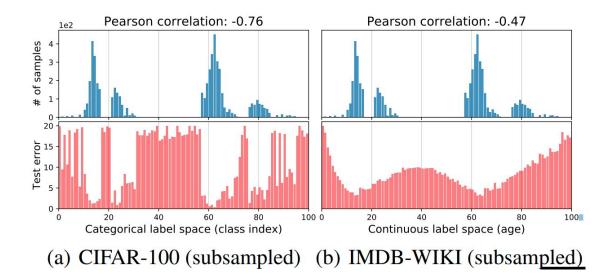
 True Negative Rate (Specificity):
 0.9

 Balanced Accuracy:
 (0.7 + 0.9)/2 = 0.80

 Precision (POS):
 70/1070 = 0.065

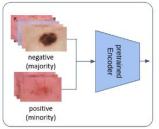
 F1 Score:
 2*0.065*0.7/(0.065 + 0.7) = 0.119

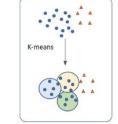
Figure 2: An example confusion table for binary classification, and the various associated performance metrics. POS: positive; NEG: negative.

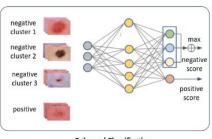


Evaluation metrics \Rightarrow Learning goals matter!

SOTA methods for IC is (substantially?) suboptimal







Balanced Classification

Imbalanced Classification in Medical Imaging via Regrouping

Le Peng¹, Yash Travadi², Rui Zhang³, Ying Cui⁴, Ju Sun¹ ¹Computer Science & Engineering, University of Minnesota, Twin Cities ²School of Statistics, University of Minnesota, Twin Cities ³Department of Surgery, University of Minnesota, Twin Cities ⁴Industrial and Systems Engineering, University of Minnesota, Twin Cities {peng0347,trava029,zhan1386,yingcui,jusun}@umn.edu

Imbalanced learning (NeurIPS'22 Workshop: When Medical Imaging Meets NeurIPS) https://arxiv.org/abs/2210.12234

Encoding

Regrouping

Binary Classification

Multi-class Classification

	binary CIFAR-100			binary HAM10000		-	AP (%) ↑								
Method	BA (%) ↑	AP (% Neg (45,000		BA (%) ↑	AP (9 Neg (9, 688)		Method	BA (%) ↑		mel 1113	bkl 1099	bcc 514	bakiec 327		df 115
CE	81.9	99.9	68.1	76.6	99.6	67.3	CE	62.5	96.7	66.4	73.5	79.1	59.2	86.0	53.8
WCE	84.5	99.9	58.2	84.9	99.7	56.5	WCE	66.3	96.3	46.5	58.5	67.6	54.9	88.2	2 57.8
Focal	80.4	99.7	70.5	51.9	90.8	37.0	Focal	60.3	96.9	62.5	69.2	74.9	48.7	84.3	50.0
LDAM	77.4	100	62.8	50.0	98.9	20.8	LDAM	56.5	96.0	62.9	66.2	71.0	51.6	83.6	10.0
LA	81.9	100		r đim	n ban	ath	therfor	m61.5(90.0	67.9	72.3	71.1	65.5	84.2	19.3
AP	73.8	99.9	O u 54.6	r <u>s</u> im	99.5	34.1	tperfor RUSC	59.4	92.4	30.9	29.0	39.8	24.9	74.9	39.7
RUSC	84.4	99.7	16.8	89.7	99.6	35.6	DSMT	60.5			70.5	76.8	58.3	81.4	51.0
DSMT	58.0	99.7	48.7	76.0	99.5	66.2	ROS	71.5	97.5	73.3	82.8	88.2	71.2	94.2	61.8
ROS	83.4	99.4	68.8	81.1	99.4	74.7							hereiter		
RG+CEm	87.9 +6.0	99.8 -0.1	77.2 +9.1	83.7 +7.1	99.2 -0.4	79.9 +12.5	$RG+CE_m$	66.6			82.2	78.1			62.4
RG+CE _s	86.9 +5.0		76.2 +8.1	80.6 +4.0	99.2 -0.4 99.9 +0.3	79.9 +12.5	$RG+CE_s$	67.5		72.8		78.1			62.4
RG+WCE _n	A. A		74.6 +6.5	85.0 +8.4	99.1 -0.5	83.9 +16.5	RG+WCE,		94.3	72.6	76.0	82.0	68.9	95.2	72.5
$RG+WCE_n$ RG+WCE _s	•		74.6 +6.5	80.8 +8.4	99.1 -0.3 99.9 +0.3	83.9 +16.5	RG+WCE _s	67.9	98.0	72.7	78.0	82.8	71.4	91.1	69.8

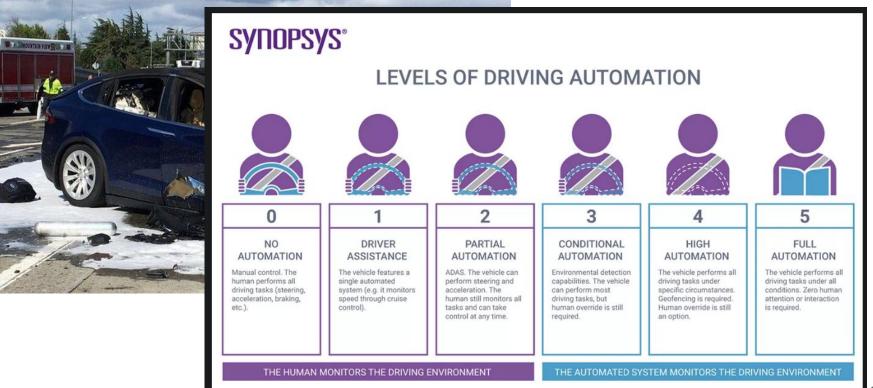
Ongoing: principled learning goals

 $\max_{\boldsymbol{\theta},t} \operatorname{recall}(f_{\boldsymbol{\theta}},t) \quad \text{s.t. } \operatorname{precision}(f_{\boldsymbol{\theta}},t) \geq \alpha,$ fix precision, optimize recall (FPOR): $\max_{\boldsymbol{\theta},t} \text{ precision}_t \quad \text{ s. t. recall}(f_{\boldsymbol{\theta}},t) \geq \alpha,$ fix recall, optimize precision (FROP): $\max_{\boldsymbol{\theta}.t} F_{\beta}(f_{\boldsymbol{\theta}},t),$ optimize F_{β} score (OFBS): optimize AP (OAP): max AP(f_{θ}). optimize multiclass performance (OMCP): max multiclass-metric (f_{θ}, t) . $\theta.t$ optimize regression performance (OREGP): max regression-metric(f_{θ});

Outline

- Addressing data poverty—transfer learning
- Addressing data poverty—federated learning
- Addressing data inequality—imbalanced learning
- Perspective: toward human-in-the-loop health data science

Different levels of self-driving cars



Toward different levels of AI-assisted healthcare

 $\max_{\boldsymbol{\theta},t} \ \mathrm{recall}(f_{\boldsymbol{\theta}},t) \quad \mathrm{s.\,t.} \ \mathrm{precision}(f_{\boldsymbol{\theta}},t) \geq \alpha,$

$$\begin{split} \max_{\substack{\boldsymbol{\theta},t \\ \boldsymbol{\theta},t}} & \operatorname{precision}_t \quad \text{ s. t. } \operatorname{recall}(f_{\boldsymbol{\theta}},t) \geq \alpha, \\ \max_{\substack{\boldsymbol{\theta},t \\ \boldsymbol{\theta}}} & F_{\beta}(f_{\boldsymbol{\theta}},t), \\ \max_{\substack{\boldsymbol{\theta}}} & \operatorname{AP}(f_{\boldsymbol{\theta}}). \end{split}$$

Setting realistic goals: to be aligned with practical clinical demand

Machine Learning with a Reject Option: A survey

Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, Jesse Davis

Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with a reject option recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake.

 Gaussian Noise
 Shot Noise
 Impulse Noise
 Defocus Blur
 Frosted Glass Blur

 Motion Blur
 Zoom Blur
 Snow
 Frost
 Fog

Addressing robustness: identifying most common nuisance factors in medical AI

Allowing abstention: refraining from making prediction when sensing uncertainty/robustness issues

computer science & Engineering

glovex.umn.edu

GROUP OF LEARNING, OPTIMIZATION, VISION, HEALTHCARE, AND X

University of Minnesota Driven to Discover™

