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CV/NLP domains are lucky

L AI 0 N .3. TABLE 2: Statistics of commonly-used data sources.

Large-scale Artificial Intelligence Open Netw, Corpora Size Source Latest Update Time
0 ; , BookCorpus 5GB Books Dec-2015
TRULY OPEN Al. 100% NON-PROFIT. 100 Gutenbelgg ) Books Dec-2021
LAION, as a non-profit organization, provides dataset C4 800GB CommonCrawl Apr—2019
models to liberate machine learning research. By dg CC-Stories-R 31GB CommonCrawl Sep-2019
encourage open public education and a more envi CC-NEWS 78GB CommonCrawl Feb-2019
friendly use of resources by reusing existing datas REALNEWSs m 120GB CommonCrawl Apl‘-2019
models. OpenWebTeﬁt 38GB Reddit links Mar-2023
Pushift.io |163] 2TB Reddit links Mar-2023
it LI R Wikipedia 21GB  Wikipedia Mar-2023
BigQuer - Codes Mar-2023
the Pile hﬁl 800GB Other Dec-2020
ROOTS |167 1.6TB Other Jun-2022

source: https:.//arxiv.org/abs/2303.18223



https://arxiv.org/abs/2303.18223

Not all fields are as lucky

Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine
Learning?

The central question for this thrust is “which knowledge should be leveraged in SciML, and how
should this knowledge be included?” Any answers will naturally depend on the SciML task and
computational budgets, thus mirroring standard considerations in traditional scientific comput-
ing. BASIC RESEARCH NEEDS FOR
Scientific Machine Learning
Hard Constraints. One research avenue involves incorporation of domain knowledge through

imposition of constraints that cannot be violated. These hard constraints could be enforced during
training, replacing what typically is an unconstrained optimization problem with a constrained
one. In general, such constraints could involve simulations or highly nonlinear functions of the
training parameters. Therefore, there is a need to identify particular cases when constraint qual-
ification conditions can be ensured as these conditions are necessary regularity conditions for
constrained optimization [57-59]. Although incorporating constraints during training generally
makes maximal use of training data, there may be additional opportunities to employ constraints
at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Core Technologies for Artificial Intelligence

Prepared for U.S
Department of Energy

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying ] Adanced Scentfic
the objective function (soft constraints) used in training. It is understood that ML loss function se- Compiag Semenrt
lection should be guided by the task and data. Therefore, opportunities exist for developing loss Esﬁ“E’“ﬁé"Y
functions that incorporate domain knowledge and analyzing the resulting impact on solvability :

Ref https:./www.osti.gov/servlets/purl/1478744 Domain-Aware Scientific Machine Learning



https://www.osti.gov/servlets/purl/1478744

There's no free lunch!

(Self)-Supervised learning as data fitting Knovxledge Building in prior
knowledge is crucial
for reducing the data
complexity

7,

all-data Al

® 11 . n
e.g., “convolutional
layers

Typically, #data points we need grow
exponentially with respect to dimension
(i.e., curse of dimensionality)



Today's talk:

several stories about data-knowledge tradeofts

e Scientific inverse problems (SIPs)
- Data-driven (data-rich) methods for SIPs
- Single-instance (data-poor) methods for SIPs

e Principled computational tool for data-knowledge tradeoffs



Scientific Inverse Problems



Inverse problems Inverse problem: giveny = f(x), recover X

MRI reconstruction

x-ray pinhole
source aperture

E ’ sample
Fraunhofer

plane

Image super-resolution 3D reconstruction Coherent diffraction imaging (CDI)



Traditional methods

Inverse problem: giveny = f(x), recover X
min £(y, f(x)) + X R(x) RegFit
X\ e N

data fitting regularizer

Limitations:
e \Which/{? (e.g., unknown/compound noise)
e WhichR? (e.qg., structures not amenable to math description)
e Speed



DL has changed
everything



DL methods for SIPs: the radical/simplistic way

Inverse problem: giveny = f(x), recover X

Learn the f~! with a training set {(y;, x;)}

Limitations;

e Wasteful: not using f

Yi e Representative data?
e Not always straightforward
input layer (see, eg., Tayal et al. Inyerse
hidden layer 1 hidden layer 2 Problems, Deep I__earnlng, and
Symmetry Breaking.

https://arxiv.org/abs/2003.00077)
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Why “more is less’ here? Ferward symmetry: {+/V, =V} <y

Implies: on dense training set, very close
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Remedy:
symmetry breaking
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A slightly more complicated example

y = |AX|2 A :iid Gaussian

Forward symmetry: global sign

y = |Ax[” = [A(—x)[’

(Gaussian phase retrieval)

After Symmetry Breaking

Before Symmetry Breaking

Dim| Sample DNN K-NN DNN K-NN
5 2ed 4.08 11.82 85.37 68.26
5ed 2.20 9.41 90.51 66.58
le5 1.30 7.98 96.66 66.18
0.37 4.71 12271 65.08

le6

- e

More is more

—-_— - —
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Symmetry-breaking principle

Symmetry breaking: a preprocessing step on the training set
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[Submitted on 18 Mar 2024]
What is Wrong with End-to-End Learning for Phase
Retrieval?

Wenjie Zhang, Yuxiang Wan, Zhong Zhuang, Ju Sun

For nonlinear inverse problems that are prevalent in imaging science, symmetries in the forward
model are common. When data-driven deep learning approaches are used to solve such
problems, these intrinsic symmetries can cause substantial learning difficulties. In this paper, we
explain how such difficulties arise and, more importantly, how to overcome them by
preprocessing the training set before any learning, i.e., symmetry breaking. We take far-field
phase retrieval (FFPR), which is central to many areas of scientific imaging, as an example and
show that symmetric breaking can substantially improve data-driven learning. We also formulate
the mathematical principle of symmetry breaking.

A version with careful mathematical analysis forthcoming ...



DL methods for SIPs: the middle way

Inverse problem: giveny = f(x), recover X

min (3, 70 + A RO pogr

data fitting regularizer

Recipe: revamp numerical methods for RegFit with pretrained/trainable
DNNs



DL methods for SIPs: the middle way

Algorithm unrolling

If R proximal friendly

min £(y, f(x)) + A R(x)
X N— e

data fitting regularizer,

K= Pt T F(x)E (y, £x))

Idea: make Pr trainable, using {(Xz 3 yz)}

Eg.
Uy, f(x)) = lly — Ax|3 ,

initialization

I1-yATA

rrrrrrrrrrrrrrrrrrrrr

g data-fit ﬂATy regularizer data-fi nA Ty g
nnnnnn k yer network layer network
I =gATA S [ e T pATA ()

Fig credit: Deep Learning Techniques for Inverse Problems in Imaging https:/arxiv.org/abs/2005.06001



https://arxiv.org/abs/2005.06001

DL methods for SIPs: the middle way
min {(y, f(x)) + X R(x)
X N — N——

data fitting regularizer

Using{x;} only

Plug-and-Play

x" = Pr(xf — V' (x5 (y, f(x)))

E.g.replace Pr with pretrained denoiser

Deep generative models

Pretraining X; =~ Ge (Zz) Vi
Deployment: mzin f(y, fo GH(Z)) + AR o Gy (Z)



DL methods for SIPs: a survey

Focuses on linear

Deep Learning Techniques inverse problems,
for Inverse Problems in Imaging e, flinear
Gregory Ongie; Ajil Jalal{ Christopher A. Metzler* https./arxiv.org/abs/2005.06001
Richard G. Baraniuk! Alexandros G. DimakisY Rebecca Willett!
April 2020
Limitations of middle ways:
Abstract R t t d t 5
Recent work in machine learning shows that deep neural networks can be used to solve ® epresen ative ata:
a wifi.e.variety of‘inver§§ proble.ms’ari:ei’ng in cc?mpltlta’tional imagi'ng.’ We exPlore th‘e cent.ral P Alg 0O I’Ith m-sen Sltlve
prevailing themes of this emerging area and present a taxonomy that can be used to categorize
different problems and reconstruction methods. Our taxonomy is organized along two central iNnitiali i ?
axes: (1) whether or not a forward model is known and to what extent it is used in training ® GOOd In Itla I'Izatlon ' (eg
and testing, and (2) whether or not the learning is supervised or unsupervised, i.e., whether or Manekar et al. Deep Learning Initialized
not the training relies on access to matched ground truth image and measurement pairs. We Phase Retrieval.
also discuss the tradeoffs associated with these different reconstruction approaches, caveats https://suniu,orq/oub/NIPSZO—\X/S-DL4F

and common failure modes, plus open problems and avenues for future work.

PR.pdf)


https://arxiv.org/abs/2005.06001
https://sunju.org/pub/NIPS20-WS-DL4FPR.pdf
https://sunju.org/pub/NIPS20-WS-DL4FPR.pdf

Other specialized surveys

Algorithm Unrolling: Interpretable, Efficient Deep _
Learning for Signal and Image Processing Focused on alg. unrolling

Vishal Monga, Senior Member, IEEE, Yuelong Li, Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Untrained Neural Network Priors for Inverse
Imanina Drnlalame: A Qiirnviavg Focused on

Deep Internal Leaming' single-instance methods

DUnderstandlng Untrained Deep Models for
fom Ther Memter. 1nyerse Problems: Algorithms and Theory

Ismail Alkhouri, Evan Bell, Avrajit Ghosh, Shijun Liang, Rongrong Wang,

Theoretical Perspectives on Deep  gocused on theories for
Learning Methods in Inverse Problems linear IPs

Jonathan Scarlett, Reinhard Heckel, Miguel R. D. Rodrigues, Paul Hand, and Yonina C. Eldar



Story Il: Dont be too Bayesian

der = —3;/2 - xdt + /[ dw,

Fixed forward diffusion process

Noise

Generative reverse denoising process

dr = —0; |x/2 +

va: log Pt (ZE)

| dt + \/Bdw.

t
= ey (x)

——



Bayesian thinking

(Reverse SDE for DDPM) dx = —f; [ /2 + Vg logp:(x)| dt + / Brdw

H Think of conditional score function
Vo log pe(x|y) = Vg log pi(x) + Vo log pi(ylz)
ﬂ Conditional reverse SDE

dx = [—B;/2 « — B(Vglogpi(x) + Vg log pi(y|x))]| dt + /Bedw



Interleaving methods

Algorithm 1 Template for interleaving methods

Input: # Diffusion steps 7', measurement y
l: 7 ~ N(O, TI)
2: for: =T —1to0do
3 8« sg)(a:i)
4 ﬁ?o(—\/%—i(illi—\/l—@zé)
5s x| < DDIM reverse with &, and $
6 x;_1 < (Approximately) Projec-

tion [39/(301(33](32!/40}/41}/34] or gradient
update [20}1281119}|21}1291127}126] with x
and x| to get closer to {x|y = A(x)}
7: end for
Output: Recovered object x
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Nonlinear IPs

BID with turbulence
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Feasibility crisis

DMPlug (ours)
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Explained in one picture (vs. our plugin idea)
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On linear IPs

Table 1: (Linear IPs) Super-resolution and inpainting with additive Gaussian noise (¢ = 0.01).
(Bold: best, under: second best, green: performance increase, red: performance decrease)

Super-resolution (4 x) Inpainting (Random 70%)

CelebA (256 x 256) FFHQ (256 x 256)  CelebA (256 x 256) FFHQ (256 x 256)

LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIMt LPIPS| PSNR{Y SSIMt LPIPS| PSNR{T SSIMT

ADMM-PnP 0.217 2699  0.808 0.229  26.25 0.794 0.091 31.94  0.923 0.104  30.64  0.901

DMPS 0.070  28.89  0.848 0.076  28.03  0.843 0297 2452  0.693 0.326 2331  0.664
DDRM 0.226 2634  0.754 0.282  25.11 0.731 0.185  26.10 0.712 0.201 25.44  0.722
MCG 0.725 19.88  0.323 0.786 18.20  0.271 1.283 10.16  0.049 1.276 10.37  0.050
ILVR 0.322 21.63 0.603 0.360  20.73  0.570 0.447 1582  0.484 0.483 15.10  0.450
DPS 0.087  28.32  0.823 0.098 2744 0814 0.043 3224 0924 0.046 3095 0913
ReSample 0.080  28.29  0.819 0108 2522 0.773 0.039  30.12  0.904 0.044  27.91 0.884

DMPlug (ours) 0.067 31.25 0.878 0.079 30.25 0.871 0.039 34.03 0.936 0.038 33.01 0.931
Ours vs. Best compe. —0.003 +2.36 +0.030 +40.003 +2.22 +40.028 —0.000 +1.79 +40.012 —0.006 +2.06 +40.018




On nonlinear IPs

Table 2: (Nonlinear IP) Nonlinear deblurring with additive Gaussian noise (¢ = 0.01). (Bold: best,
under: second best, green: performance increase, red: performance decrease)

CelebA (256 x 256)  FFHQ (256 x 256) LSUN (67}

(256 x 256)

LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIM{t
BKS-styleGAN 1.047  22.82  0.653 1.051 2207 0.620 0987 2090  0.538
BKS-generic 1.051  21.04  0.591 1.056 20.76  0.583  0.994 1855  0.481

MCG 0.705 13.18 0.135 0.675 13.71 0.167 0.698 14.28 0.188
ILVR 0.335 21.08 0.586 0.374 20.40 0.556 0.482 18.76 0.444
DPS 0.149 24.57 0.723 0.130 25.00 0.759 0.244 23.46 0.684
ReSample 0.104 28.52 0.839 0.104 27.02 0.834 0.143 26.03 0.803

DMPlug (ours) 0.073 31.61 0.882 0.057 32.83 0.907 0.083 30.74 0.882
Ours vs. Best compe. —0.031 +3.09 +0.043 —-0.047 +5.79 +0.073 —-0.060 +4.71 +0.079




The paper (NeurlPS24)

[Submitted on 27 May 2024]

DMPIlug: A Plug-in Method for Solving Inverse Problems with
Diffusion Models

Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, Ju Sun

Pretrained diffusion models (DMs) have recently been popularly used in solving inverse problems
(IPs). The existing methods mostly interleave iterative steps in the reverse diffusion process and
iterative steps to bring the iterates closer to satisfying the measurement constraint. However, such
interleaving methods struggle to produce final results that look like natural objects of interest (i.e.,
manifold feasibility) and fit the measurement (i.e., measurement feasibility), especially for nonlinear
IPs. Moreover, their capabilities to deal with noisy IPs with unknown types and levels of measurement
noise are unknown. In this paper, we advocate viewing the reverse process in DMs as a function and
propose a novel plug-in method for solving IPs using pretrained DMs, dubbed DMPIlug. DMPlug
addresses the issues of manifold feasibility and measurement feasibility in a principled manner, and
also shows great potential for being robust to unknown types and levels of noise. Through extensive
experiments across various IP tasks, including two linear and three nonlinear IPs, we demonstrate that
DMPIug consistently outperforms state-of-the-art methods, often by large margins especially for

nonlinear IPs. The code is available at this https URL. htt| S'//arXiV or ;l/abS/z |05 162 | 9


https://arxiv.org/abs/2405.16749

DL methods for SIPS: the economic/surprising

way
Deep image prior (DIP) x ~ Gy (z) Gy (and 2) trainable
min £(y, f(x)) + A R(x)
X N\’ N
data fitting regularizer No extra training
| data!

mein Uy, foGe(z)) + AR o Gy(z)

Ulyanov et al. Deep image prior. [JCV'20. https:/arxiv.org/abs/1711.10925
Contrasting: Deep generative models

Pretraining: X; =~ G9 (ZZ) V1
Deployment: mzin E(Ya fo GO(Z)) + AR oGy (z)


https://arxiv.org/abs/1711.10925

Deep image prior (DIP)
DIP's cousin(s) x ~ Gy ()

Gy (and 2z) trainable
Idea: (visual) objects as continuous functions

Neural implicit representation (NIR)
x ~Dox D : discretization X : continuous function
Physics-informed neural networks (PINN)

: H PDE (v) Observational bias
INN(x, t; 6) 7 - i
i / ot
| 2 7 :
E 9 Ju du ot \
: = Tu——y
| | ox ot Ox S 1
H o o i
| D6 \ & |
| omaponmessseacions S hmsassee S et prseot x?

Symmetry
Y

Figure credit: https:/www.nature.com/articles/s42254-021-00314-5



https://www.nature.com/articles/s42254-021-00314-5

Story Ill: We benefit from DL even with a single data
point
Blind image deblurring (BID)

blur kernel

y =
N~

blurry and noisy image

Given'y,
recover X (and/or k )

Also Blind Deconvolution




Landmark surveys

e 1996: Kundur and Hatzinakos. Blind image deconvolution. https:/doi.org/10.1109/79.489268

e 2011 Levin et al. Understanding blind deconvolution algorithms.
https://doi.org/10.1109/TPAMI.2011.148

e 2012: Kohler et al. Recording and playback of camera shake: Benchmarking blind
deconvolution with a real-world database. https:.//doi.org/10.1007/978-3-642-33786-4_3

e 2016 Lai et al. A comparative study for single image blind deblurring.
https:.//doi.org/10.1109/CVPR.2016.188

e 2021 Koh et al. Single image deblurring with neural networks: A comparative survey
https://doi.org/10.1016/].cviu.2020.103134

e 2022: Zhang et al. Deep image blurring: A survey https://doi.ora/10.1007/s11263-022-01633-5

See also: Awesome Deblurring
https://github.com/subeeshvasu/Awesome-Deblurring

Key challenge of data-driven approach:
obtaining sufficiently expressive data (Koh et al'21. Zhang et al'22)


https://doi.org/10.1109/79.489268
https://doi.org/10.1109/TPAMI.2011.148
https://doi.org/10.1007/978-3-642-33786-4_3
https://doi.org/10.1109/CVPR.2016.188
https://doi.org/10.1016/j.cviu.2020.103134
https://doi.org/10.1007/s11263-022-01633-5
https://github.com/subeeshvasu/Awesome-Deblurring

Untouched practical questions

(2
(@) manycom

Key question addressed in this paper: How do we solve blind image deblurring without
knowing: (1) the size of the blur kernel, (2) the type and level of noise, and (3) whether
it 1s blur / noise only or both ?



blur kernel

Double DIPs < - T

lurry and noisy image clean image

min é(y, k x 33) + Ak Rk(k) +Ap R, (CB)
k,z N s N—— N——

data fitting regularizing k regularizing @

ldea: parameterize both k and x as DIPs

e CNN+CNN (Wang et al19,
https.//doiieeecomputersociety.org/10.1109/ICCVW.2019.00127;
Tran et al'21, https:/arxiv.org/abs/2104.00317 )

e MLP + CNN (SelfDeblur; Ren et al'20, https:/arxiv.ora/abs/1908.02197)

Still problematic with
1) kernel size over-specification  2) substantial noise


https://doi.ieeecomputersociety.org/10.1109/ICCVW.2019.00127
https://arxiv.org/abs/2104.00317
https://arxiv.org/abs/1908.02197

A glance of

our modifications

Over-specify k
Over-specify x

k ~half of the image sizes

Handle bounded shift

min ||y — Go, (zk) *

ekaex

fl/ﬁz VS fl

Table 1: /1 /{5 vs TV for noise: mean and (std).

Low Level

High Level

PSNR

A

PSNR

A

L1

32.64 (0.69)

0.0001 (o0.018)

27.74 (0.23)

0.0002 (0.0019)

L2
TV

31.12 (0.52)

0.002 (0.07)

24.34 (0.78)

0.02 (0.10




SelfDeblur vs our method

SelfDeblur SelfDeblur



Real world results

Difficult cases

_— 1) High depth contrast

2) High brightness contrast

Outperform SOTA
DeblurGaN-v2  data-driven methods!

ZHANG20

DeblurGAN-v2 ZHANG20

)
1%,
i,

SelfDeblur SelfDeblur Our SelfDeblur



Breakthroughs in imaging

blur kernel

A~
y = "k o+ x4+
~~ ~~
blurry and noisy image clean image

Mostly due to optical deficiencies (e.g., defocus) and motions

Our

Given y,
recover X (and/or k )

Also Blind Deconvolution

Bragg Coherent Diffraction Imaging

HIO+ER with Shrinkwrap

First PR method that won in a double-blind test, and First BID method that works with unknown kernel
systematic evaluation, beating a 40-years old legacy size AND substantial noise

Practical Phase Retrieval Using Double Deep Image Priors Blind Image Deblurring with Unknown Kernel Size and
Substantial Noise

Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun
Zhong Zhuang, Taihui Li, Hengkang Wang, Ju Sun



Related papers

e Lietal Self-Validation: Early Stopping for Single-Instance Deep Generative Priors

(BMVC21) https:/arxiv.ora/abs/2110.12271

e Wang et al. Early Stopping for Deep Image Prior https://arxiv.org/abs/2112.06074
(TMLR'23)

e /huang et al. Blind Image Deblurring with Unknown Kernel Size and Substantial

Noise. https://arxiv.orga/abs/2208.09483 (1JCV'24)

e Zhuang et al. Practical Phase Retrieval Using Double Deep Image Priors.

https://arxiv.ora/abs/2211.00799 (Electronic Imaging'24)

e Lietal Deep Random Projector: Toward Efficient Deep Image Prior. (CVPR'23)


https://arxiv.org/abs/2110.12271
https://arxiv.org/abs/2112.06074
https://arxiv.org/abs/2208.09483
https://arxiv.org/abs/2211.00799

Data-driven methods for SIPs

IR i
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f’“l.“‘ I‘?“ . ’4‘ l" ‘ é‘[ 0 2 4 6 8 ;IT TviiHY*A(f‘i)”Z xr - 'O’L'r s AR(xE)
y y Vo ly = AT
Story I: More could be less Story II: Don't be too Bayesian
Single-instance methods for SIPs Story llI: Benefit from DL with a single data
poj t blur kernel noise
Deep image prior (DIP) x ~ Gy (z) Gy (and 2) trainable _ A =2
- e TF
min\e(y, f(x) ), + A ,R(x), o a:/Id I:)lzy “tnaget' L defici ies ( def ) and moti
x Ostly due to optical deficiencles (e.g., defocus) and motions
data fitting regularizer No extra training .
ﬂ data! ré\c/ove}r"x (and/ork )
mein e(y, f o GG(Z)) — AR [e) GG(Z) Also Blind Deconvolution

Ulyanov et al. Deep image prior. IJCV'20. https./arxivora/abs/1711.10925



Principled data-knowledge tradeoft
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Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine
Learning?

The central question for this thrust is “which knowledge should be leveraged in SciML, and how
should this knowledge be included?” Any answers will naturally depend on the SciML task and
computational budgets, thus mirroring standard considerations in traditional scientific comput-
ing. BASIC RESEARCH NEEDS FOR

Scientific Machine Learning
Hard Constraints. One research avenue involves incorporation of domain knowledge through
imposition of constraints that cannot be violated. These hard constraints could be enforced during
training, replacing what typically is an unconstrained optimization problem with a constrained
one. In general, such constraints could involve simulations or highly nonlinear functions of the
training parameters. Therefore, there is a need to identify particular cases when constraint qual-
ification conditions can be ensured as these conditions are necessary regularity conditions for
constrained optimization [57-59]. Although incorporating constraints during training generally
makes maximal use of training data, there may be additional opportunities to employ constraints
at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Core Technologies for Artificial Intelligence

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying
the objective function (soft constraints) used in training. It is understood that ML loss function se- :

lection should be guided by the task and data. Therefore, opportunities exist for developing loss s EN‘ERGY
functions that incorporate domain knowledge and analyzing the resulting impact on solvability ‘

Ref https:./www.osti.gov/serviets/purl/1478744 Domain_Aware 5cientiﬁc Machine Learning




When DL meets constraints

Artificial neural networks
Unconstrained optimization

XX
>, \'} 1'/{
PRI

. L
min —Zg[yi,{NN(wly---ywkabla"'7bk)}(mi)]
=1

w's,bis N “

7N .
//A‘\\ & B min f(ar:) “Solved”
input layer €r V
. hidden layer 1 hidden layer 2 —
{ Constrained optimization
-4 R min f(x) s.t. g(x) <0
£
¢ ) largely “unsolved”

used to approximate nonlinear functions



Constrained optimization
min f(x) s.t. g(x)<O0
®

largely “unsolved”

An imaginary chat between a PhD student working in deep

learning (DLP) and a PhD student working in optimization

(OP)

DLP: Man, I've solved a constrained DL problem recently

OP: Oh, that’s a hard problem

DLP: Really? I actually did it

opr: How?

DLP: My problem is min, f(x),s.t. g(x) < 0. Iput g(x)
as a penalty and then call ADAM

OP: Are you sure it works?

DLP: Yes, the performance is improved and my paper is
published at ICML

opP: Why don’t you try augmented Lagrangian methods?

DLP: No implementation in Pytorch. Is it possible we
work out some theory about my method?

OP: [ think it’s hard. It’s not convex



DL with nontrivial constraints: many pitfalls

e Robustness evaluation
e Imbalanced learning
e Topology optimization

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He' ., Ryan Devera', Wenjie Zhang' . Ying Cui’, Zhaosong Lu® and Ju Sun'
'Computer Science and Engineering, University of Minnesota
Industrial Engineering and Operations Research, University of California, Berkeley
*Industrial and Systems Engineering, University of Minnesota
{he000233, dever120, zhan7867 } @umn.edu, yingcui @berkeley.edu, {zhaosong, jusun}@umn.edu




Robustness evaluation: penalty methods for
complicated d (perceptual attack)

Algorithm 2 Lagrangian Perceptual Attack (LPA)

max £ (y, fg (:l:’)) 1: procedure LPA(classifier network f(-), LPIPS distance d(-, -), input x, label y, bound €)
x’ 2 A+ 0.01
’ / n 3 X+ x+0.01xN(0,1) > initialize perturbations with random Gaussian noise
s.t. d (m’ x ) <e, TE [O’ 1] 4 foriinl,...,Sdo > we use S = 5 iterations to search for the best value of \
5: fortinl,...,T do > T' is the number of steps
dlz. ') = d(x) — ¢ x 6: A + Vz [L(f(%X),y) — Amax (0,d(x,x) —¢€)] > take the gradient of (5)
( ’ ] ) o ” ( ) A( )”2 pe_rceptual' T A=A/|Al2 > normalize the gradient
where d)(m) = [ g1 (m), e gL (w) ] dIStance 8 7N =€x* (O.l)t/T > the step size 7 decays exponentially
9: m <+ d(X,Xx+ hA)/h  >m = derivative of d(X, -) in the direction of A; h = 0.1
Projection onto the constraint is com plicated 10: df; +— X+ (n/m)A > take a step of size 7 in LPIPS distance
Il end for
12: if d(X,x) > € then
13: A 10X > increase A if the attack goes outside the bound
Penalty methods 14: end if
15: end for
~ ’ ~ 16: X + PROJECT(d, X, X, €)
max  L(f(®),y) — Amax (0, [6%) — 62 =€) 1T i

18: end procedure

Solve it for each fixed A and then increase A

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C,, Singla, S., & Feizi, S. https:/arxiv.org/abs/2006.12655



https://arxiv.org/abs/2006.12655

Problem with penalty methods

cross-entropy loss margin loss

max £ (y, fo(@'))
gt d(z;2') <&, 2#elod]®

Method Viol. (%) | Att. Succ. (%) + Viol. (%) | Att. Succ. (%) 1

Fast-LPA 73.8 3.54 41.6 56.8

LPA 0.00 80.5 0.00 97.0 2 >

PPGD 5.44 25.5 0.00 38.5 d(z,z') = ||p(x) — p(')]|,

h = [Gil®)senn G
PWCF (ours) 0.62 93.6 0.00 100 where glz)= [ 9ile) 9r(@) ]
LPA, Fast-LPA: penalty methods  PPGD: Projected gradient descent PWCEF, an optimizer with
a principled stopping

Penalty methods tend to encounter criterion on stationarity
large constraint violation (i.e., infeasible solution, known in optimization & feasibility

theory) or suboptimal solution

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv.2303.13401.



Key algorithm GRA’SO

http://www.timmitchell.com/software/ GRANSO/

Nonconvex, nonsmooth, constrained

mi{n f(x), st. ci(x) <0,VieZ; ci(x)=0,Viecl.
EEL T

Penalty sequential quadratic programming (P-SQP)

1
min_ u(f ) + VFGx)'d) +e's+ —d Hid
deRn, seRp 2

s.t. c(x) + Vc(xk)Td =5 =0

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. 'A BFGS-SQP method for nonsmooth, nonconvex, constrained
optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.


http://www.timmitchell.com/software/GRANSO/

Algorithm highlights

Steering strategy for the penalty parameter

If feasibility improvement is insufficient : Is(di;xx) < cvv—(xk)

Stationarity based on (approximate) gradient sampling

Gy = [Vf(.’l;k) Vf(:];kfl) Vf(:z;k””)]

s 2/Gwd2

gt 1" A=1. A>30

Direction atm

Gradient sampling direction



Key take-away G RA’S O

e Principled stopping criterion and line search, to obtain a
solution with certificate (stationarity & feasibility check)

e Quasi-newton style method for fast convergence, i.e,
reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.



Limitations of GRANSO GRAWSO

f_grad imag((conj (Bty)*Cx."')/(y'*x));

f_grad = f_grad(:);

ci;gfé& = Feai((ﬁoﬁi(étys;éx.'5)(9;¥x)):

ci_grad = ci_grad(:);

analytical gradients required Lack of Auto-Differentiation
2 I N R Lack of GPU Support
. = size(C,1); No native support of tensor variables
X = reshape(x,p,m);

= impossible to do deep learning with GRANSO
vector variables only



GRANSO meets PyTorch

CRANJSO + O PyTorch

¢« HIH v I 3
{OPYGRANSO

NCVX PyGRANSO
Documentation

Search the docs ... O N ‘ VX Iréi{% ), S8 CZ(X) S 0, Vi € I; CZ(X) = O,V'L € (":

Introduction

Home

Installation

Settings

First general-purpose solver for constrained DL
NCVX Package problems

Examples

NCVX: A General-Purpose Optimization Solver for
Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun



Example 1. Support Vector Machine (SVM)

comb fn(X struct):

. W X struct.w
Soft-margin SVM b = X_struct.b

zeta = X struct.zeta

f = 0.5%w.T@w + C*torch.sum(zeta)
m;)ng—llwll +CZQ :
ci = pygransoStruct()
st. y; (wT mz-—{—b) Z 1—G, G=0Yi=1,....,n ci.cl = 1 - zeta - y*(x@w+b)
ci.c2 -zeta

ce
[f,ci,cel

var_in = {"w": [d,1], '

soln = pygranso(var in,comb fn)




Binary classification (odd vs even digits) on MNIST dataset

Accuracy versus the Cost Parameter C (log-scale)

0.906
—&— Training Accuracy (liblinear)
—&- Testing Accuracy (liblinear)
—8— Training Accuracy (PyGRANSO)
—@- Testing Accuracy (PyGRANSO)
0.904 -
0.902 A
. SR oz
&
3
& 0.900 -
Liblinear (coordinate descent)
0.898 4
-=d
vs PyGRANSO
0.896 +

104 1073 102 1071 10°
Cost Parameter C



Example 2: Robustness—min formulation

- comb fn(X struct):

X prime = X struct.x prime

i /
min d(a, @) f = d(x,x prime)
€T
oy / . / ci = pygransoStruct()
9. %. max fé(ﬂ: ) Z fg(.:n ) f theta all = f theta(x prime)
{#c fy = f theta all[:,y]

a:, = [O 1]"‘ fi = torch.hstack((f theta alll:,:y],f theta alll:

ci.cl = fy - torch.max(fi)
ci.c2 -X prime
ci.c3 = x prime-1

ce
[f,ci,ce]

var in {"x prime": list(x.shape)}

soln = pygranso(var in,comb fn)

Ly+1:




s !/
CIFAR10 dataset H;;l,n d(x;x’)

Compared with FAB [iterative constraint s.t. max fa(x') > f5(x)

linearization + projected gradient] Efc )
https./github.com/fra3i/auto-attack z' € [0,1]

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack L2 attack Linf attack


https://github.com/fra31/auto-attack

https://ncvx.org/

Ma ny NCVX PyGRANSO

Documentation

others

Introduction
Installation

Settings

Examples
Rosenbrock
Eigenvalue Optimization
Dictionary Learning
Nonlinear Feasibility Problem
Sphere Manifold
Trace Optimization
Robust PCA
Generalized LASSO
Logistic Regression
LeNet5
Perceptual Attack

Orthogonal RNN

Hiahlinhts

&

Home

& NCVX

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX
problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer
Science & Engineering, University of Minnesota, Twin Cities.

The initial release of NCVX contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating
auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. As a highlight, PyGRANSO
can solve general constrained deep learning problems, the first of its kind.

O PYGRANSO

r"
LJd


https://ncvx.org/

Data-driven methods for SIPs

IR i

J -
§ ﬂ\

Feasible-Set

-

. i I | " |
-2+ ‘ T2l 1 -2 .
+  Original Data W "'\ q I ‘ +  Original Data /VI’%T-I T ‘ o o ’?x R
-3{ — MLP a3 — ML X0 - \.ﬁ.jffﬁf Lf, ‘ xx%
f’“l.“‘ I‘?“ . ’4‘ l" ‘ é‘[ 0 2 4 6 8 ;IT TviiHY*A(f‘i)”Z xr - 'O’L'r s AR(xE)
y y Vo ly = AT
Story I: More could be less Story II: Don't be too Bayesian
Single-instance methods for SIPs Story llI: Benefit from DL with a single data
poj t blur kernel noise
Deep image prior (DIP) x ~ Gy (z) Gy (and 2) trainable _ A =2
- e TF
min\e(y, f(x) ), + A ,R(x), o a:/Id I:)lzy “tnaget' L defici ies ( def ) and moti
x Ostly due to optical deficiencles (e.g., defocus) and motions
data fitting regularizer No extra training .
ﬂ data! ré\c/ove}r"x (and/ork )
mein e(y, f o GG(Z)) — AR [e) GG(Z) Also Blind Deconvolution

Ulyanov et al. Deep image prior. IJCV'20. https./arxivora/abs/1711.10925



A (the?) tool for DL with nontrivial constraints

CRANJSO + O PyTorch
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