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Deep learning models are LLMs

Credit: On the Opportunities and Risks of Foundation Models
https:./arxiv.org/abs/2108.07258
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Towards Geospatial Foundation Models via Continual Pretraining

Matias Mendieta'* Boran Han?  Xingjian Shi*  Yi Zhu?  Chen Chen'
! Center for Research in Computer Vision, University of Central Florida
2 Amazon Web Services ® Boson Al

Method # Images Epochs ARP T Time | CO3 |
ImageNet-22k Sup.  14M - 0.0 - -
Sentinel-2 [30] 1.3M 100 -583 155.6 222
GeoPile 600k 200 092 1333 19.0
GeoPile' 600k 200 1.24 1333 19.0
GeoPile' 600k 800 1.45 5332 76.0
Figure 2. We visualize som
datasets with Sentinel-2 (l¢ GFM 600k 100 33 l 933 l 33

noticeably much lower feat

across 1mages than that of vurwcornc prouanng uarascr:



Not all fields are as lucky

Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine
Learning?

The central question for this thrust is “which knowledge should be leveraged in SciML, and how
should this knowledge be included?” Any answers will naturally depend on the SciML task and
computational budgets, thus mirroring standard considerations in traditional scientific comput-
ing. BASIC RESEARCH NEEDS FOR
Scientific Machine Learning
Hard Constraints. One research avenue involves incorporation of domain knowledge through

imposition of constraints that cannot be violated. These hard constraints could be enforced during
training, replacing what typically is an unconstrained optimization problem with a constrained
one. In general, such constraints could involve simulations or highly nonlinear functions of the
training parameters. Therefore, there is a need to identify particular cases when constraint qual-
ification conditions can be ensured as these conditions are necessary regularity conditions for
constrained optimization [57-59]. Although incorporating constraints during training generally
makes maximal use of training data, there may be additional opportunities to employ constraints
at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Core Technologies for Artificial Intelligence

Prepared for U.S
Department of Energy

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying ] Adanced Scentfic
the objective function (soft constraints) used in training. It is understood that ML loss function se- Compiag Semenrt
lection should be guided by the task and data. Therefore, opportunities exist for developing loss Esﬁ“E’“ﬁé"Y
functions that incorporate domain knowledge and analyzing the resulting impact on solvability :

Ref https:./www.osti.gov/servlets/purl/1478744 Domain-Aware Scientific Machine Learning



https://www.osti.gov/servlets/purl/1478744

There's no free lunch!

Supervised learning as data fitting Knovxledge Building in prior
knowledge is crucial
for reducing the data
complexity

7,

all-data Al

® 11 . n
e.g., “convolutional
layers

Typically, #data points we need grow
exponentially with respect to dimension
(i.e., curse of dimensionality)



This talk;

several stories about data-knowledge tradeofts

e Scientific inverse problems (SIPs)
- Data-driven (data-rich) methods for SIPs
- Single-instance (data-poor) methods for SIPs

e Principled computational tool for data-knowledge tradeoffs



Scientific Inverse Problems



Inverse problems Inverse problem: giveny = f(x), recover X

MRI reconstruction

x-ray pinhole
source aperture

E ’ sample
Fraunhofer

plane

Image super-resolution 3D reconstruction Coherent diffraction imaging (CDI)



Traditional methods

Inverse problem: giveny = f(x), recover X
min £(y, f(x)) + X R(x) RegFit
X\ e N

data fitting regularizer

Limitations:
e \Which/{? (e.g., unknown/compound noise)
e WhichR? (e.qg., structures not amenable to math description)
e Speed



DL methods for SIPs: the radical way

Inverse problem: giveny = f(x), recover X

Learn the f~! with a training set {(y;, x;)}

Limitations;

e Wasteful: not using f

Yi e Representative data?
e Not always straightforward
input layer (see, eg., Tayal et al. Inyerse
hidden layer 1 hidden layer 2 Problems, Deep I__earnlng, and
Symmetry Breaking.

https://arxiv.org/abs/2003.00077)



https://arxiv.org/abs/2003.09077
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Why “more is less’ here? Ferward symmetry: {+/V, =V} <y

Implies: on dense training set, very close
y's can mapped to very far aways x's
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Remedy:
symmetry breaking
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A slightly more complicated example

y = |AX|2 A :iid Gaussian

Forward symmetry: global sign

y = |Ax[” = [A(—x)[’

(Gaussian phase retrieval)

After Symmetry Breaking

Before Symmetry Breaking

Dim| Sample DNN K-NN DNN K-NN
5 2ed 4.08 11.82 85.37 68.26
5ed 2.20 9.41 90.51 66.58
le5 1.30 7.98 96.66 66.18
0.37 4.71 12271 65.08

le6

- e

More is more

—-_— - —

N SN

More is less

& N s




Symmetry-breaking principle

Symmetry breaking: a preprocessing step on the training set
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[Submitted on 18 Mar 2024]
What is Wrong with End-to-End Learning for Phase
Retrieval?

Wenjie Zhang, Yuxiang Wan, Zhong Zhuang, Ju Sun

For nonlinear inverse problems that are prevalent in imaging science, symmetries in the forward
model are common. When data-driven deep learning approaches are used to solve such
problems, these intrinsic symmetries can cause substantial learning difficulties. In this paper, we
explain how such difficulties arise and, more importantly, how to overcome them by
preprocessing the training set before any learning, i.e., symmetry breaking. We take far-field
phase retrieval (FFPR), which is central to many areas of scientific imaging, as an example and
show that symmetric breaking can substantially improve data-driven learning. We also formulate
the mathematical principle of symmetry breaking.



DL methods for SIPs: the middle way

Inverse problem: giveny = f(x), recover X

min (3, 70 + A RO pogr

data fitting regularizer

Recipe: revamp numerical methods for RegFit with pretrained/trainable
DNNs



DL methods for SIPs: the middle way

Algorithm unrolling

If R proximal friendly

min £(y, f(x)) + A R(x)
X N— e

data fitting regularizer,

K= Pt T F(x)E (y, £x))

Idea: make Pr trainable, using {(Xz 3 yz)}

Eg.
Uy, f(x)) = lly — Ax|3 ,

initialization

I1-yATA

rrrrrrrrrrrrrrrrrrrrr

g data-fit ﬂATy regularizer data-fi nA Ty g
nnnnnn k yer network layer network
I =gATA S [ e T pATA ()

Fig credit: Deep Learning Techniques for Inverse Problems in Imaging https:/arxiv.org/abs/2005.06001



https://arxiv.org/abs/2005.06001

DL methods for SIPs: the middle way
min {(y, f(x)) + X R(x)
X N — N——

data fitting regularizer

Using{x;} only

Plug-and-Play

x" = Pr(xf — V' (x5 (y, f(x)))

E.g.replace Pr with pretrained denoiser

Deep generative models

Pretraining X; =~ Ge (Zz) Vi
Deployment: mzin f(y, fo GH(Z)) + AR o Gy (Z)



DL methods for SIPs: a survey

Focuses on linear

Deep Learning Techniques inverse problems,
for Inverse Problems in Imaging e, flinear
Gregory Ongie; Ajil Jalal{ Christopher A. Metzler* https./arxiv.org/abs/2005.06001
Richard G. Baraniuk! Alexandros G. DimakisY Rebecca Willett!
April 2020
Limitations of middle ways:
Abstract R t t d t 5
Recent work in machine learning shows that deep neural networks can be used to solve ® epresen ative ata:
a wifi.e.variety of‘inver§§ proble.ms’ari:ei’ng in cc?mpltlta’tional imagi'ng.’ We exPlore th‘e cent.ral P Alg 0O I’Ith m-sen Sltlve
prevailing themes of this emerging area and present a taxonomy that can be used to categorize
different problems and reconstruction methods. Our taxonomy is organized along two central iNnitiali i ?
axes: (1) whether or not a forward model is known and to what extent it is used in training ® GOOd In Itla I'Izatlon ' (eg
and testing, and (2) whether or not the learning is supervised or unsupervised, i.e., whether or Manekar et al. Deep Learning Initialized
not the training relies on access to matched ground truth image and measurement pairs. We Phase Retrieval.
also discuss the tradeoffs associated with these different reconstruction approaches, caveats https://suniu,orq/oub/NIPSZO—\X/S-DL4F

and common failure modes, plus open problems and avenues for future work.

PR.pdf)


https://arxiv.org/abs/2005.06001
https://sunju.org/pub/NIPS20-WS-DL4FPR.pdf
https://sunju.org/pub/NIPS20-WS-DL4FPR.pdf

Deep generative models
Story Il Dont be  pretraining x; ~ Gy (2;) Vi
too Bayesian Deployment. min £(y, f o Gy(z)) + AR o Gy (z)

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

How to use pretrained diffusion models for SIPs?



Bayesian thinking

Reverse SDE for DM
¢
dx = [—%):c — B(t)V g, log ps (x4 ] dt + +/ B(t)dw

Vs 1ngt(a3t|y) = Vg, logpt(a?t) + Ve, 10gpt(y|33t)

Reverse conditional SDE for SIPs

dx = [—@ax — B(t)(Vg, logpi(xy) + Vi, log pe(ylxy)) ] dt + /B(t)dw



Bayesian thinking: after several approx steps

Algorithm 1 DPS - Gaussian

Require: N, y, (¢}, {5}y
1: €ny ~ N(0,1I)
2: fori =N —1to0do
3: § + sg(xi, 1)
To + == (@i + (1 — @)8)
z~N(0,I)

/ ,/a;(l—d,-_l) \/&i—lﬁi A~ ~
;1 11—54; Tt Xo+0iz

4

5

6 L
Figure 2: Probabilistic graph. Black 7: ;1 « @/ | — (iVa, |y — A(@0)||3

8:

:

solid line: tractable, blue dotted line: in- end for
tractable in general. return xo

Credit: Diffusion Posterior Sampling for General Noisy Inverse Problems https://openreview.net/forum?id=-OnD9zGAGTok



https://openreview.net/forum?id=OnD9zGAGT0k

Explained in one picture (vs. our plugin idea)

Feasible Set
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FeaS|b|llty crisig |Inverse problem: giveny = f(x). recover x

100
101
102
103
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0 20 40 60 8o 100
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Preliminary result on linear SIPs

Table 1: (Linear IPs) Quantitative comparison for super-resolution and inpainting on CelebA [25]
and FFHQ [34] with additional Gaussian noise (¢ = 0.01). (Bold: best, under: second best, green:
performance increase, red: performance decrease)

Super-resolution (4 X)

Inpainting (Random 70%)

CelebA (256 x 256)

FFHQ (256 X 256)

CelebA (256 x 256)

FFHQ (256 x 256)

LPIPS| PSNRfT SSIM{T LPIPS| PSNR{ SSIMT LPIPS| PSNR{ SSIMT LPIPS]

PSNRT SSIMt

ADMM-PnP [39]
DMPS [40]
DDRM [ ]
MCG [10]

ILVR [41]
DPS [18]
ReSample [9]

Ours

Ours vs. Best compe.

0.217 26.99  0.808
0.070 28.89  0.848
0.226 2634  0.754
0.725 19.88 0.323
0.322 21.63 0.603
0.087 28.32 0.823
0.080 28.29  0.819
0.067 31.25 0.878

—0.003

+2.36

+0.030

0.229
0.076
0.282
0.786
0.360
0.098
0.108
0.079

26.25
28.03
25.11
18.20
20.73
27.44
25.22
30.25

+0.003 +2.22

0.794
0.843
0.731
0271
0.570
0.814
0.773
0.871

+0.028

0.091
0.297
0.185
1.283
0.447
0.043
0.039
0.039
—0.000

31.94
24.52
26.10
10.16
15.82
32.24
30.12
34.03

+1.79

0.923
0.693
0.712
0.049
0.484
0.924
0.904
0.936

+0.012

0.104
0.326
0.201
1.276
0.483
0.046
0.044
0.038

—0.006

30.64
2331
25.44
10.37
15.10
30.95
27.91
33.01
+2.06

0.901
0.664
0.722
0.050
0.450
0.913
0.884
0.931

+0.018




Preliminary result on nonlinear SIPs

Table 3: (Nonlinear IP) Quantitative comparison for BID on CelebA [25] and FFHQ [34] with
additional Gaussian noise (o = 0.01). (Bold: best, under: second best, green: performance increase,
red: performance decrease)

CelebA (256 x 256)

FFHQ (256 x 256)

Motion Gaussian Motion Gaussian

LPIPS, PSNRT SSIMtT LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS, PSNRT SSIMT
SelfDeblur [43] 0.568 16.59 0417 0.579 16.55 0423 0.628 1633  0.408 0.604 1622 0410
DeBlurGANv2 [44] 0313 2056  0.613 0350 2429 0.743 0.353 19.67  0.581 0374 2358  0.726
Stripformer [45] 0.287  22.06 0.644 0316 2503  0.747 0324 2131 0.613 0339 2434  0.728
MPRNet [46] 0332 2053  0.620 0375 2272 0.698 0.373 19.70  0.590 0.394 2233  0.685
Pan-DCP [47] 0.606 1583 0483 0.653  20.57  0.701 0.616 1559  0.464 0.667  20.69  0.698
Pan-/ [48] 0.631 15.16  0.470 0.654 2049  0.675 0.642 1443 0.443 0.669 2034  0.671
ILVR [4] 0.398 19.23  0.520 0338  21.20  0.588 0.445 18.33  0.484 0375 2045  0.555
BlindDPS [13] 0.164  23.60  0.682 0.173  25.15 0.721 0.185 21.77  0.630 0.193 2383  0.693
Ours 0.104  29.61  0.825 0.140 2884  0.795 0.135 2799  0.794 0.169 2826  0.811

Ours vs. Best compe. —0.060 +6.01 +0.143 —0.033 +3.69 +0.048 —0.050 +6.22 +0.164 —0.024 +3.92 +0.083




Am | supposed/allowed to show this?

DMPlug: A Plug-in Method for Solving Inverse
Problems with Diffusion Models

Anonymous Author(s)
Affiliation

Address
email



DL methods for SIPS: the economic way

Deep image prior (DIP) x ~ Gy (z) Gy (and 2) trainable
min £(y, f(x)) + A R(x)
X N\’ N
data fitting regularizer No extra training
| data!

mein Uy, foGe(z)) + AR o Gy(z)

Ulyanov et al. Deep image prior. [JCV'20. https:/arxiv.org/abs/1711.10925
Contrasting: Deep generative models

Pretraining: X; =~ G9 (ZZ) V1
Deployment: mzin E(Ya fo GO(Z)) + AR oGy (z)


https://arxiv.org/abs/1711.10925

Deep image prior (DIP)
DIP's cousin(s) x ~ Gy ()

Gy (and 2z) trainable
Idea: (visual) objects as continuous functions

Neural implicit representation (NIR)
x ~Dox D : discretization X : continuous function
Physics-informed neural networks (PINN)

: H PDE (v) Observational bias
INN(x, t; 6) 7 - i
i / ot
| 2 7 :
E 9 Ju du ot \
: = Tu——y
| | ox ot Ox S 1
H o o i
| D6 \ & |
| omaponmessseacions S hmsassee S et prseot x?

Symmetry
Y

Figure credit: https:/www.nature.com/articles/s42254-021-00314-5



https://www.nature.com/articles/s42254-021-00314-5

NIR for 3D rendering and view synthesis

Input Images Optimize NeRF Render new views
T A A B e a g
&AM
FaMaEged i
ERCE T BT R =
P AEFEEAEY L
SRBREY S W S e
FlerrgatEd
THLBGEFTE %
w2 B Ak R AA
R R R

P ———
A Fy i

Yoo

https:./www.matthewtancik.com/nerf



https://www.matthewtancik.com/nerf

Story Ill: We benefit from DL even with a single data
point
Blind image deblurring (BID)

blur kernel

y =
N~

blurry and noisy image

Given'y,
recover X (and/or k )

Also Blind Deconvolution




Landmark surveys

e 1996: Kundur and Hatzinakos. Blind image deconvolution. https:/doi.org/10.1109/79.489268

e 2011 Levin et al. Understanding blind deconvolution algorithms.
https://doi.org/10.1109/TPAMI.2011.148

e 2012: Kohler et al. Recording and playback of camera shake: Benchmarking blind
deconvolution with a real-world database. https:.//doi.org/10.1007/978-3-642-33786-4_3

e 2016 Lai et al. A comparative study for single image blind deblurring.
https:.//doi.org/10.1109/CVPR.2016.188

e 2021 Koh et al. Single image deblurring with neural networks: A comparative survey
https://doi.org/10.1016/].cviu.2020.103134

e 2022: Zhang et al. Deep image blurring: A survey https://doi.ora/10.1007/s11263-022-01633-5

See also: Awesome Deblurring
https://github.com/subeeshvasu/Awesome-Deblurring

Key challenge of data-driven approach:
obtaining sufficiently expressive data (Koh et al'21. Zhang et al'22)


https://doi.org/10.1109/79.489268
https://doi.org/10.1109/TPAMI.2011.148
https://doi.org/10.1007/978-3-642-33786-4_3
https://doi.org/10.1109/CVPR.2016.188
https://doi.org/10.1016/j.cviu.2020.103134
https://doi.org/10.1007/s11263-022-01633-5
https://github.com/subeeshvasu/Awesome-Deblurring

Untouched practical questions

(2
(@) manycom

Key question addressed in this paper: How do we solve blind image deblurring without
knowing: (1) the size of the blur kernel, (2) the type and level of noise, and (3) whether
it 1s blur / noise only or both ?



blur kernel

Double DIPs < - T

lurry and noisy image clean image

min é(y, k x 33) + Ak Rk(k) +Ap R, (CB)
k,z N s N—— N——

data fitting regularizing k regularizing @

ldea: parameterize both k and x as DIPs

e CNN+CNN (Wang et al19,
https.//doiieeecomputersociety.org/10.1109/ICCVW.2019.00127;
Tran et al'21, https:/arxiv.org/abs/2104.00317 )

e MLP + CNN (SelfDeblur; Ren et al'20, https:/arxiv.ora/abs/1908.02197)

Still problematic with
1) kernel size over-specification  2) substantial noise


https://doi.ieeecomputersociety.org/10.1109/ICCVW.2019.00127
https://arxiv.org/abs/2104.00317
https://arxiv.org/abs/1908.02197

A glance of

our modifications

Over-specify k
Over-specify x

k ~half of the image sizes

Handle bounded shift

min ||y — Go, (zk) *

ekaex

fl/ﬁz VS fl

Table 1: /1 /{5 vs TV for noise: mean and (std).

Low Level

High Level

PSNR

A

PSNR

A

L1

32.64 (0.69)

0.0001 (o0.018)

27.74 (0.23)

0.0002 (0.0019)

L2
TV

31.12 (0.52)

0.002 (0.07)

24.34 (0.78)

0.02 (0.10




SelfDeblur vs our method

SelfDeblur SelfDeblur



Real world results

Difficult cases

_— 1) High depth contrast

2) High brightness contrast

Outperform SOTA
DeblurGaN-v2  data-driven methods!

ZHANG20

DeblurGAN-v2 ZHANG20

)
1%,
i,

SelfDeblur SelfDeblur Our SelfDeblur



Breakthroughs in imaging

blur kernel

A~
y = "k o+ x4+
~~ ~~
blurry and noisy image clean image

Mostly due to optical deficiencies (e.g., defocus) and motions

Our

Given y,
recover X (and/or k )

Also Blind Deconvolution

Bragg Coherent Diffraction Imaging

HIO+ER with Shrinkwrap

First PR method that won in a double-blind test, and First BID method that works with unknown kernel
systematic evaluation, beating a 40-years old legacy size AND substantial noise

Practical Phase Retrieval Using Double Deep Image Priors Blind Image Deblurring with Unknown Kernel Size and
Substantial Noise

Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun
Zhong Zhuang, Taihui Li, Hengkang Wang, Ju Sun



Related papers

e Lietal Self-Validation: Early Stopping for Single-Instance Deep Generative Priors

(BMVC21) https:/arxiv.ora/abs/2110.12271

e Wang et al. Early Stopping for Deep Image Prior https://arxiv.org/abs/2112.06074
(TMLR'23)

e /huang et al. Blind Image Deblurring with Unknown Kernel Size and Substantial

Noise. https://arxiv.orga/abs/2208.09483 (1JCV'24)

e Zhuang et al. Practical Phase Retrieval Using Double Deep Image Priors.

https://arxiv.ora/abs/2211.00799 (Electronic Imaging'24)

e Lietal Deep Random Projector: Toward Efficient Deep Image Prior. (CVPR'23)
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Data-driven methods for SIPs
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Ulyanov et al. Deep image prior. IJCV'20. https./arxivora/abs/1711.10925



Principled data-knowledge tradeoft
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Thrust B: How Should Domain Knowledge Be Incorporated into Supervised Machine
Learning?

The central question for this thrust is “which knowledge should be leveraged in SciML, and how
should this knowledge be included?” Any answers will naturally depend on the SciML task and
computational budgets, thus mirroring standard considerations in traditional scientific comput-
ing. BASIC RESEARCH NEEDS FOR

Scientific Machine Learning
Hard Constraints. One research avenue involves incorporation of domain knowledge through
imposition of constraints that cannot be violated. These hard constraints could be enforced during
training, replacing what typically is an unconstrained optimization problem with a constrained
one. In general, such constraints could involve simulations or highly nonlinear functions of the
training parameters. Therefore, there is a need to identify particular cases when constraint qual-
ification conditions can be ensured as these conditions are necessary regularity conditions for
constrained optimization [57-59]. Although incorporating constraints during training generally
makes maximal use of training data, there may be additional opportunities to employ constraints
at the time of prediction (e.g., by projecting predictions onto the region induced by the constraints).

Core Technologies for Artificial Intelligence

Soft Constraints. A similar avenue for incorporating domain knowledge involves modifying
the objective function (soft constraints) used in training. It is understood that ML loss function se- :

lection should be guided by the task and data. Therefore, opportunities exist for developing loss s EN‘ERGY
functions that incorporate domain knowledge and analyzing the resulting impact on solvability ‘

Ref https:./www.osti.gov/serviets/purl/1478744 Domain_Aware 5cientiﬁc Machine Learning




When DL meets constraints

Artificial neural networks
Unconstrained optimization

XX
>, \'} 1'/{
PRI

. L
min —Zg[yi,{NN(wly---ywkabla"'7bk)}(mi)]
=1

w's,bis N “

7N .
//A‘\\ & B min f(ar:) “Solved”
input layer €r V
. hidden layer 1 hidden layer 2 —
{ Constrained optimization
-4 R min f(x) s.t. g(x) <0
£
¢ ) largely “unsolved”

used to approximate nonlinear functions



Constrained optimization
min f(x) s.t. g(x)<O0
®

largely “unsolved”

An imaginary chat between a PhD student working in deep

learning (DLP) and a PhD student working in optimization

(OP)

DLP: Man, I've solved a constrained DL problem recently

OP: Oh, that’s a hard problem

DLP: Really? I actually did it

opr: How?

DLP: My problem is min, f(x),s.t. g(x) < 0. Iput g(x)
as a penalty and then call ADAM

OP: Are you sure it works?

DLP: Yes, the performance is improved and my paper is
published at ICML

opP: Why don’t you try augmented Lagrangian methods?

DLP: No implementation in Pytorch. Is it possible we
work out some theory about my method?

OP: [ think it’s hard. It’s not convex



DL with nontrivial constraints: many pitfalls

e Robustness evaluation
e Imbalanced learning
e Topology optimization

Deep Learning with Nontrivial Constraints: Methods and Applications

Chuan He' ., Ryan Devera', Wenjie Zhang' . Ying Cui’, Zhaosong Lu® and Ju Sun'
'Computer Science and Engineering, University of Minnesota
Industrial Engineering and Operations Research, University of California, Berkeley
*Industrial and Systems Engineering, University of Minnesota
{he000233, dever120, zhan7867 } @umn.edu, yingcui @berkeley.edu, {zhaosong, jusun}@umn.edu




Robustness evaluation: penalty methods for
complicated d (perceptual attack)

Algorithm 2 Lagrangian Perceptual Attack (LPA)

max £ (y, fg (:l:’)) 1: procedure LPA(classifier network f(-), LPIPS distance d(-, -), input x, label y, bound €)
x’ 2 A+ 0.01
’ / n 3 X+ x+0.01xN(0,1) > initialize perturbations with random Gaussian noise
s.t. d (m’ x ) <e, TE [O’ 1] 4 foriinl,...,Sdo > we use S = 5 iterations to search for the best value of \
5: fortinl,...,T do > T' is the number of steps
dlz. ') = d(x) — ¢ x 6: A + Vz [L(f(%X),y) — Amax (0,d(x,x) —¢€)] > take the gradient of (5)
( ’ ] ) o ” ( ) A( )”2 pe_rceptual' T A=A/|Al2 > normalize the gradient
where d)(m) = [ g1 (m), e gL (w) ] dIStance 8 7N =€x* (O.l)t/T > the step size 7 decays exponentially
9: m <+ d(X,Xx+ hA)/h  >m = derivative of d(X, -) in the direction of A; h = 0.1
Projection onto the constraint is com plicated 10: df; +— X+ (n/m)A > take a step of size 7 in LPIPS distance
Il end for
12: if d(X,x) > € then
13: A 10X > increase A if the attack goes outside the bound
Penalty methods 14: end if
15: end for
~ ’ ~ 16: X + PROJECT(d, X, X, €)
max  L(f(®),y) — Amax (0, [6%) — 62 =€) 1T i

18: end procedure

Solve it for each fixed A and then increase A

Ref Perceptual adversarial robustness: Defense against unseen threat models. Laidlaw, C,, Singla, S., & Feizi, S. https:/arxiv.org/abs/2006.12655



https://arxiv.org/abs/2006.12655

Problem with penalty methods

cross-entropy loss margin loss

max £ (y, fo(@'))
gt d(z;2') <&, 2#elod]®

Method Viol. (%) | Att. Succ. (%) + Viol. (%) | Att. Succ. (%) 1

Fast-LPA 73.8 3.54 41.6 56.8

LPA 0.00 80.5 0.00 97.0 2 >

PPGD 5.44 25.5 0.00 38.5 d(z,z') = ||p(x) — p(')]|,

h = [Gil®)senn G
PWCF (ours) 0.62 93.6 0.00 100 where glz)= [ 9ile) 9r(@) ]
LPA, Fast-LPA: penalty methods  PPGD: Projected gradient descent PWCEF, an optimizer with
a principled stopping

Penalty methods tend to encounter criterion on stationarity
large constraint violation (i.e., infeasible solution, known in optimization & feasibility

theory) or suboptimal solution

Ref Optimization and Optimizers for Adversarial Robustness. Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. arXiv preprint arXiv.2303.13401.



Key algorithm GRA’SO

http://www.timmitchell.com/software/ GRANSO/

Nonconvex, nonsmooth, constrained

mi{n f(x), st. ci(x) <0,VieZ; ci(x)=0,Viecl.
EEL T

Penalty sequential quadratic programming (P-SQP)

1
min_ u(f ) + VFGx)'d) +e's+ —d Hid
deRn, seRp 2

s.t. c(x) + Vc(xk)Td =5 =0

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. 'A BFGS-SQP method for nonsmooth, nonconvex, constrained
optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.


http://www.timmitchell.com/software/GRANSO/

Algorithm highlights

Steering strategy for the penalty parameter

If feasibility improvement is insufficient : Is(di;xx) < cvv—(xk)

Stationarity based on (approximate) gradient sampling

Gy = [Vf(.’l;k) Vf(:];kfl) Vf(:z;k””)]

s 2/Gwd2

gt 1" A=1. A>30

Direction atm

Gradient sampling direction



Key take-away G RA’S O

e Principled stopping criterion and line search, to obtain a
solution with certificate (stationarity & feasibility check)

e Quasi-newton style method for fast convergence, i.e,
reasonable speed and high-precision solution

Ref Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its
evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.



Limitations of GRANSO GRAWSO

f_grad imag((conj (Bty)*Cx."')/(y'*x));

f_grad = f_grad(:);

ci;gfé& = Feai((ﬁoﬁi(étys;éx.'5)(9;¥x)):

ci_grad = ci_grad(:);

analytical gradients required Lack of Auto-Differentiation
2 I N R Lack of GPU Support
. = size(C,1); No native support of tensor variables
X = reshape(x,p,m);

= impossible to do deep learning with GRANSO
vector variables only



GRANSO meets PyTorch

CRANJSO + O PyTorch

¢« HIH v I 3
{OPYGRANSO

NCVX PyGRANSO
Documentation

Search the docs ... O N ‘ VX Iréi{% ), S8 CZ(X) S 0, Vi € I; CZ(X) = O,V'L € (":

Introduction

Home

Installation

Settings

First general-purpose solver for constrained DL
NCVX Package problems

Examples

NCVX: A General-Purpose Optimization Solver for
Constrained Machine and Deep Learning

Buyun Liang, Tim Mitchell, Ju Sun



Example 1. Support Vector Machine (SVM)

comb fn(X struct):

. W X struct.w
Soft-margin SVM b = X_struct.b

zeta = X struct.zeta

f = 0.5%w.T@w + C*torch.sum(zeta)
m;)ng—llwll +CZQ :
ci = pygransoStruct()
st. y; (wT mz-—{—b) Z 1—G, G=0Yi=1,....,n ci.cl = 1 - zeta - y*(x@w+b)
ci.c2 -zeta

ce
[f,ci,cel

var_in = {"w": [d,1], '

soln = pygranso(var in,comb fn)




Binary classification (odd vs even digits) on MNIST dataset

Accuracy versus the Cost Parameter C (log-scale)

0.906
—&— Training Accuracy (liblinear)
—&- Testing Accuracy (liblinear)
—8— Training Accuracy (PyGRANSO)
—@- Testing Accuracy (PyGRANSO)
0.904 -
0.902 A
. SR oz
&
3
& 0.900 -
Liblinear (coordinate descent)
0.898 4
-=d
vs PyGRANSO
0.896 +

104 1073 102 1071 10°
Cost Parameter C



Example 2: Robustness—min formulation

- comb fn(X struct):

X prime = X struct.x prime

i /
min d(a, @) f = d(x,x prime)
€T
oy / . / ci = pygransoStruct()
9. %. max fé(ﬂ: ) Z fg(.:n ) f theta all = f theta(x prime)
{#c fy = f theta all[:,y]

a:, = [O 1]"‘ fi = torch.hstack((f theta alll:,:y],f theta alll:

ci.cl = fy - torch.max(fi)
ci.c2 -X prime
ci.c3 = x prime-1

ce
[f,ci,ce]

var in {"x prime": list(x.shape)}

soln = pygranso(var in,comb fn)

Ly+1:




s !/
CIFAR10 dataset H;;l,n d(x;x’)

Compared with FAB [iterative constraint s.t. max fa(x') > f5(x)

linearization + projected gradient] Efc )
https./github.com/fra3i/auto-attack z' € [0,1]

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack L2 attack Linf attack


https://github.com/fra31/auto-attack

https://ncvx.org/

Ma ny NCVX PyGRANSO
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LeNet5
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Orthogonal RNN
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Home

& NCVX

NCVX Package

NCVX (NonConVeX) is a user-friendly and scalable python software package targeting general nonsmooth NCVX
problems with nonsmooth constraints. NCVX is being developed by GLOVEX at the Department of Computer
Science & Engineering, University of Minnesota, Twin Cities.

The initial release of NCVX contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating
auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. As a highlight, PyGRANSO
can solve general constrained deep learning problems, the first of its kind.

O PYGRANSO

r"
LJd


https://ncvx.org/

Data-driven methods for SIPs
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A (the?) tool for DL with nontrivial constraints

CRANJSO + O PyTorch
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