Three Pillars of Health Data Science Transfer Learning, Federated Learning, and Imbalanced Learning

Ju Sun, PhD Computer Science & Engineering Dec 08, 2022

(Machine) Learning, (Numerical) Optimization, (Computer) Vision, healthcarE, +X

Our research themes

FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.

STOP + STOP

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

I: Trustworthy AI

III: AI for Healthcare

IV: AI for Science and Engineering

Thanks to

Thanks to

Le Peng (CS&E, PhD)

Deep learning is mostly for unstructured data

- Structured data directly go to classical MLDS tools
- Success of modern DL lies in representation learning

Deep learning is data-hungry

NLP models

Year	Model	# of Parameters	Dataset Size
2019	BERT [39]	3.4E+08	16GB
2019	DistilBERT [113]	6.60E+07	16GB
2019	ALBERT [70]	2.23E+08	16GB
2019	XLNet (Large) [150]	3.40E+08	126GB
2020	ERNIE-GEN (Large) [145]	3.40E+08	16GB
2019	RoBERTa (Large) [74]	3.55E+08	161GB
2019	MegatronLM [122]	8.30E+09	174GB
2020	T5-11B [107]	1.10E+10	745GB
2020	T-NLG [112]	1.70E+10	174GB
2020	GPT-3 [25]	1.75E+11	570GB
2020	GShard [73]	6.00E+11	-
2021	Switch-C [43]	1.57E+12	745GB

Credit: https://dl.acm.org/doi/10.1145/3442188.3445922

CV models

https://epochai.org/blog/trends-in-training-dataset-sizes

Deep learning is data-picky

The Stanford Question Answering Dataset

GLUE

The General Language Understandi resources for training, evaluating, and a consists of:

What is COCO?

F & Y ± 4

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

Object segmentation Recognition in context Superpixel stuff segmentation 330K images (>200K labeled) 1.5 million object instances 80 object categories 91 stuff categories 5 captions per image 250,000 people with keypoints

Need well-curated datasets for training and evaluation

Data poverty and inequality (DPI) in healthcare

Addressing data poverty—transfer learning

Truncated transfer learning

Fig. 3. Overview of typical TL setup, and the four TL methods that we focus on in this paper. (a) TL source domain: e.g., ImageNet object recognition; (b) TL target domain: e.g., mitotic cells classification; (c) Four TL methods: FTL, LWFT, TF, our TTL applied to ResNet50 pretrained on ImageNet.

Rethinking Transfer Learning for Medical Image Classification

Le Peng, Hengyue Liang, Gaoxiang Luo, Taihui Li, Ju Sun

https://arxiv.org/abs/2106.05152

3D PULMONARY EMBOLISM CLASSIFICATION WITH DIFFERENT TL STRATEGIES. THE BEST RESULT OF EACH COLUMN IS COLORED IN **RED**. ↑ INDICATES LARGER VALUE IS BETTER AND ↓ INDICATES LOWER VALUE IS BETTER. "-1" MEANS WITH THE BLOCK-WISE SEARCH ONLY, AND "-2" MEANS WITH THE TWO-STAGE BLOCK-LAYER HIERARCHICAL SEARCH. NOTE THAT THE RUN TIME FOR THIS TABLE IS IN SECONDS, NOT MILLISECONDS.

Method	AUROC↑	AUPRC ↑	Params(M)↓	MACs(G)↓	CPU(s)↓	GPU(s)↓
PENet	0.822 ± 0.010	0.855 ± 0.007	28.4	51.7	1.50	1.59e-2
FTL	0.821 ± 0.010	0.867 ± 0.006	47.5	66.3	1.44	1.96e-2
TF-1	0.849 ± 0.020	0.886 ± 0.017	36.1	64.9	1.41	1.93e-2
LWFT-1	0.817 ± 0.005	0.855 ± 0.003	47.5	66.3	1.44	1.96e-2
TTL-1	0.854 ± 0.013	0.889 ± 0.015	26.11	60.17	1.32	1.68e-2
TF-2	0.849 ± 0.020	0.886 ± 0.017	36.1	64.9	1.41	1.93e-2
LWFT-2	0.835 ± 0.038	0.870 ± 0.028	47.5	66.3	1.44	1.96e-2
TTL-2(ours)	0.854 ± 0.013	0.889 ± 0.015	26.11	60.17	1.32	1.68e-2

Smaller DNN model, boosted performance!

Addressing data poverty—federated learning

Traditional distributed learning:

Distribute the computing loads

Federated learning:

- Respect data privacy
- Share the intermediate MLDS models, not the raw data

Our medical CV federation

Status of our CV federation

- (UMN) COVID-19 detection (UF, Emory, IU and MHealth Fairview)
- (Emory) Racial Bias study (Emory, IU and Mhealth Fairview)
- (UMN) RibFrac detection (Emory, IU and Mhealth Fairview)

FL COVID-19 detection

Figure 1. Schematic representation of the available datasets and the analysis conducted for this study. IU: Indiana University; EU: Emory University; MHFV: M Health Fairview; UF: University of Florida; BIMCV: Valencian Region Medical ImageBank.

Table 2. Internal and external validation of federated model

· · · · · · · · · · · · · · · · · · ·								
		N	AUROC	AUPRC	95% CI	Precision	Recall	F1 score
Internal	MHFV	9102	0.951	0.838	0.940-0.963	0.616	0.840	0.711
	IU	3179	0.871	0.886	0.857-0.885	0.828	0.748	0.786
	EU	4051	0.832	0.801	0.813-0.851	0.681	0.784	0.729
External	BIMCV	3822	014960100	A61ho	n A585-01 17-	+ 846 01	0.471	0.533
	UF		Uw <u>a</u> 3gu	Jours	'nĘĮąų∠c		0.592	0.610

external validation

Table 3. Performance comparison between single institution model (SIM) and federated learning model (FLM)

	AUROC			Sensitivity			Specificity		
	SIM	FLM	P value	SIM	FLM	P value	SIM	FLM	P value
MHFV	0.944	0.951	.492	0.870	0.840	.020	0.939	0.950	<.05
BIMCV	0.557	0.601	<.05	0.301	0.471	<.05	0.833	0.730	<.05
UF	0.667	0.713	<.05	0.548	0.592	<.05	0.721	0.759	<.05

Note: We use Delong's test to compare the difference of AUROC and McNemar's test to compare specificity and sensitivity.

JOURNAL ARTICLE

Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals 3

Le Peng, Gaoxiang Luo, Andrew Walker, Zachary Zaiman, Emma K Jones, Hemant Gupta, Kristopher Kersten, John L Burns, Christopher A Harle, Tanja Magoc ... Show more

Journal of the American Medical Informatics Association, ocac188, https://doi.org/10.1093/jamia/ocac188 Published: 20 October 2022 Article history v

Federated learning (Journal of American Medical Informatics Association; 2022)

Next: FL for CV + NLP

Addressing data inequality—imbalanced learning

Imbalanced classification (IC)

Imbalanced regression (IR)

While imbalance learning is challenging?

	Predicted POS	Predicted NEG
POS	70	30
NEG	1000	9000

Accuracy:
9070/10100 = 0.898

True Positive Rate (Sensitivity, Recall):
0.7

True Negative Rate (Specificity):
0.9

Balanced Accuracy:
(0.7 + 0.9)/2 = 0.80

Precision (POS):
70/1070 = 0.065

F1 Score:
2*0.065*0.7/(0.065 + 0.7) = 0.119

Figure 2: An example confusion table for binary classification, and the various associated performance metrics. POS: positive; NEG: negative.

Evaluation metrics \Rightarrow Learning goals matter!

SOTA methods for IC is (substantially?) suboptimal

Balanced Classification

Imbalanced Classification in Medical Imaging via Regrouping

Le Peng¹, Yash Travadi², Rui Zhang³, Ying Cui⁴, Ju Sun¹ ¹Computer Science & Engineering, University of Minnesota, Twin Cities ²School of Statistics, University of Minnesota, Twin Cities ³Department of Surgery, University of Minnesota, Twin Cities ⁴Industrial and Systems Engineering, University of Minnesota, Twin Cities {peng0347,trava029,zhan1386,yingcui,jusun}@umn.edu

Imbalanced learning (NeurIPS'22 Workshop: When Medical Imaging Meets NeurIPS) https://arxiv.org/abs/2210.12234

Encoding

Regrouping

Binary Classification

Multi-class Classification

	bi	nary CIFAR-	100	bir	hary HAM10	0000
lethod	BA (%) ↑	AP (% Neg (45, 000	%) ↑) Pos (500)	BA (%) ↑	AP (Neg (9, 688)	%) ↑) Pos (327)
CE	81.9	99.9	68.1	76.6	99.6	67.3
Focal	84.5 80.4	99.9 99.7	58.2 70.5	84.9 51.9	99.7 90.8	56.5 37.0
LDAM	77.4	100	62.8	50.0	98.9	20.8
LA	81.9 73.8	100	Ou	r şim	ple r	netho
RUSC	84.4	99.7	16.8	89.7	99.6	35.6
DSMT	58.0 83.4	99.7 99.4	48.7	76.0	99.5 99.4	66.2 74.7
RG+CEm	87.9 +6.0	99.8 -0.1	77.2 +9.1	83.7 +7.1	99.2 -0.4	79.9 +12.5
RG+CE _s	86.9 +5.0	99.9 +0.0	76.2 +8.1	80.6 +4.0	99.9 +0.3	79.9 +12.5
RG+WCE _m	84.9 +3.0	99.8 -0.1 99.8 -0.1	74.6 +6.5	85.0 +8.4 80.8 +8.4	99.1 -0.5 99.9 +0.3	83.9 +16.5 83.9 +16.5

Next: principled learning goals

 $\max_{\boldsymbol{\theta},t} \operatorname{recall}(f_{\boldsymbol{\theta}},t)$ s.t. precision $(f_{\theta}, t) \geq \alpha$, fix precision, optimize recall (FPOR): $\max_{\boldsymbol{\theta},t} \text{ precision}_t \quad \text{ s. t. recall}(f_{\boldsymbol{\theta}},t) \geq \alpha,$ fix recall, optimize precision (FROP): $\max_{\boldsymbol{\theta}.t} F_{\beta}(f_{\boldsymbol{\theta}},t),$ optimize F_{β} score (OFBS): optimize AP (OAP): max AP(f_{θ}). optimize multiclass performance (OMCP): max multiclass-metric (f_{θ}, t) . $\theta.t$ optimize regression performance (OREGP): max regression-metric(f_{θ});

computer science & Engineering

glovex.umn.edu

GROUP OF LEARNING, OPTIMIZATION, VISION, HEALTHCARE, AND X

University of Minnesota Driven to Discover™

