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A curious experiment

Try to learn a concise approximation: Y ≈ QX , with
Q ∈ O (n) and X sparse.
... by solving min 1

2 ‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ O (n).
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A curious experiment

min f (Q,X)
.
= 1

2 ‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ O (n).

Objective is nonconvex: (Q,X) 7→ QX is bilinear
Orthogonal group O (n) is a nonconvex set
Combinatorially many isolated global minima: (Q,X)
or (QΠ,Π∗X) (2nn! many signed permutations Π)
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A curious experiment

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ O (n)

Apply the naive alternating directions: starting from a random
Q0 ∈ O (n)

Xk = arg min
X

f
(
Qk−1,X

)
Qk = arg min

Q
f (Q,Xk) , s.t. Q ∈ O (n) .
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What is going on here?

... You can find me and see thousands more!
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Theme of this thesis
Certain nonconvex optimization problems become tractable
when the input data are large and random (generic).
Geometry of the function landscape provides important
clues for algorithm design and analysis.

... starting with sparse dictionary learning!
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Sparse dictionary learning

Algorithmic study initialized with [Olshausen, Field. ’96] in
neuroscience.

Important algorithmic contributions from many researchers: [Lewicki,
Sejnowski.’99], [Engan et al. ’99], [Aharon, Elad, Bruckstein. ’06], many
others

Widely used in image processing, vision, audio, and machine learning
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Dictionary learning - the complete case

Assume Q is square and nonsingular, then row (Y ) = row (X).

When p ≥ Ω (n log n), rows of X are the sparsest vectors in
row (Y ) [Spielman, Wang, Wright. ’12]

min ‖q∗Y ‖0 s.t. q 6= 0.

if we recover one row (up to scaling) of X , then we use deflation
to find the others.
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Dictionary learning: the complete case

min ‖q∗Y ‖0 s.t. q 6= 0.

Convex relaxation:

min ‖q∗Y ‖1 s.t. r∗q = 1

Provably succeeds when θn = O (
√
n), provably fails if

θn = Ω
(√
n log n

)
[Spielman, Wang, Wright.’12].

Nonconvex relaxation:

Model problem

min ‖q∗Y ‖1 s.t. ‖q‖2 = 1.

many precedents, e.g., [Zibulevsky-Perlmutter, ’01] in
source separation.
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The model problem

Model problem

min
1

p
‖q∗Y ‖1 =

1

p

p∑
i=1

|q∗yi| s.t. ‖q‖22 = 1. Y ∈ Rn×p

Convex objective function, but nonconvex constraint
q ∈ Sn−1.
If p ≥ Ω (n log n), w.h.p. every global optimizer q�
produces q∗�Y that recovers one row of X (up to scaling)
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Towards geometric understanding

Model problem

min 1
p ‖q

∗Y ‖1 = 1
p

∑p
i=1 |q∗yi| s.t. ‖q‖22 = 1. Y ∈ Rn×p

Slightly modified model problem

min
1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Work with a smooth surrogate for |z|:

hµ (z) = µ log

(
ez/µ + e−z/µ

2

)

Recognize the objective as a normalized
sum of independent random variables −→
expectation, asymptotically
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Why might this work?

W.l.o.g., assume for analysis that Y = X (i.e., A = I); we
correctly recover a row iff an algorithm produces q� = ±ei,
i = 1, . . . , n

f (q) = 1
p

∑p
i=1 hµ (q∗xi)

q (w) =(
w1, . . . , wn−1,

√
1− ‖w‖22

)
g (w) = f (g (w))

Target points are
w� = 0,±e1, . . . ,±en−1
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Formally

Lemma: Suppose θ ∈
[
1
n ,

1
2

)
, and µ < cn−5/4. Then

∇2E [g (w)] � c′θ
µ
I , for ‖w‖ ≤ µ

4
√
2

w∗∇E[g(w)]
‖w‖ ≥ c′θ, for µ

4
√
2
≤ ‖w‖ ≤ R

w∗∇E[g(w)]w

‖w‖2 ≤ −c′θ, for ‖w‖ ≥ R
(R = Θ (1)).

and so, every local optimizer of E [g (w)] is a target point.
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Convergence in function landscape

When does the finite-sample objective converge to the
asymptotic one, in optimization sense?
...informally, is the function geometry “nice” for some large but
finite p?
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Finite-sample result

Objective g (w) = 1
p

∑p
i=1 hµ (q (w)∗ xi) is a sum of independent RVs.

The proof follows a typical concentration-expectation path

Lemma

Suppose θ ∈
[
1
n
, 1
2

)
, if µ < cn−5/4, and p ≥ Cn3

µ2θ2
logn, it holds uniformly

w.h.p. that

∇2E [g (w)] � c′′θ
µ

I , for ‖w‖ ≤ µ

4
√
2

w∗∇E[g(w)]
‖w‖ ≥ c′′θ, for µ

4
√
2
≤ ‖w‖ ≤ R

w∗∇E[g(w)]w

‖w‖2 ≤ −c′′θ, for ‖w‖ ≥ R (R = Θ (1)).
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Algorithm design

... following intuition we build from the geometry:

Don’t know the chart q (w) ahead of time
=⇒ work directly on q ∈ Sn−1.
Pull the “niceness” back to the sphere:
descent direction in w ⇐⇒ descent direction in q

along some curve

Need to escape saddle points =⇒ Use
second-order information. Here, via the
trust region method.

Trust-region on manifolds [Absil, Baker, Gallivan.
’07], also [Absil, Mahoney, Sepulchre. ’08]
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Trust region method
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Pull things together

Theorem (informal)

Suppose that θ ∈
[
1
n ,

1
2

)
, µ < cn−5/4, Y = QX with Q ∈ O (n). If

we observe p ≥ poly (n) samples, then applying the trust region
method with fixed radius ∆ = 1

poly(n) for T = poly (n) iterations.
W.h.p, the algorithm produces a q̂ such that

‖q̂ − q�‖ ≤ C
µ

θ

√
n log p

p

for some target solution q� satisfying q∗�Y = ±e∗iX .

Using linear programming rounding + deflation, one can recover all of
X , and subsequently Q.

If Q is not an orthobasis, apply preconditioning, but need
p ≥ poly

(
n, σmin (Q)−1).
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Comparison with the Literature

Efficient algorithms with performance guarantees
[Spielman, Wang, Wright,’12] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Agarwal, Anandkumar, Netrapali,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora, Ge, Moitra,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

Quasipolynomial algorithms with better guarantees
[Spielman, Wang, Wright,’12] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Arora, Bhaskara, Ge, Ma,’14] different prob. model, θ = O (1/polylog (n))

[Barak, Kelner, Steurer,’14] sum-of-squares, θ = Õ (1)

Other theoretic work on local geometry: [Gribonval,
Schnass’11], [Geng, Wright, ’11], [Schnass’14]

This work: a polynomial algorithm for squared Q, θ = O(1).
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What we have done so far...

min 1
p

∑p
i=1 hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Prove as p becomes large, the nonconvex program becomes
tractable under our probabilistic setting.
Geometry has guided our analysis and algorithm design.

Related publications:

Sun, Qu, Wright. Complete dictionary recovery over the sphere. In preparation.

Qu, Sun, Wright. Finding a sparse vector in a subspace: Linear sparsity using alternating directions.
NIPS’14.
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Future Directions

For sparse dictionary learning:
Streamline the proof and work directly in manifold
language
With directly with the ‖·‖1 function (partial progress)
Does similar thing happens if we look at structured
dictionary directly? (orthogonal group - very likely; tight
-frame - likely)
Algorithm side: how to understand the surprisingly
successful alternating direction method in this setting?
...

Ju Sun [Advisor: Prof. John Wright] When Nonconvex Optimization Meets Big Data



24/26

Proving nonconvex recovery

Theme of this thesis

Certain nonconvex optimization problems become tractable
when the input data are large and random (generic).

Geometry of the function landscape provides important clues for
algorithm design and analysis.

Matrix completion: [Keshevan, Oh, Montanari.’09], [Jain, Netrapali, Sanghavi.
’13], [Hardt’13], [Hardt, Wooters. ’14]. Also [Meta, Jain, Dhillon.’09]
Dictionary learning: [Agarwal, Anandkumar, Netrapali. ’13 ], [Arora, Ge,
Moitra. ’13], [Agarwal, Anandkumar, Jain, Netrapali.’13]
Tensor recovery: [Jain, Oh. ’13], [Anandkumar, Ge, Janzamin. ’14]
Phase retrieval: [Netrapali, Jain, Sanghavi.’13], [Candes, Li, Soltanokoltabi. ’14]
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Future Directions

For the analytic strategy:

Generalized Model Problem

min
1

p

p∑
i=1

fi (q) s.t. q ∈M.

fi’s are independent, andM is some Riemannian manifold
(Sn−1, O (n), {X : rank (X) = r}, etc)

Other problems: phase retrieval, matrix/tensor recovery,
recovery of signal with simultenous structures, blind
deconvolution, etc
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THANKS to Prof. John Wright and Mr. Qing Qu.

Questions?
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