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A curious experiment

Patches
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A curious experiment
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Try to learn a concise approximation: Y ~ QX, with
Q € O (n) and X sparse.
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Try to learn a concise approximation: Y ~ QX, with
Q € O (n) and X sparse.
.. by solving min 1 ||Y — QX7 +A[|X|;, st. Q€ O(n).
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A curious experiment

|

g > Y € Rnxp

Patches

min  f(Q,X)=3|Y —QX|%+A|X|,, st.QeO(n).

@ Objective is nonconvex: (Q, X) — QX is bilinear
@ Orthogonal group O (n) is a nonconvex set

e Combinatorially many isolated global minima: (Q, X)
or (QIL, IT* X) (2"n! many signed permutations IT)
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A curious experiment
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P Y € R™P

Patches

min 7(@X) = 5 |Y ~QX[E+ X, st.Qe0Mm)

Apply the naive alternating directions: starting from a random
Qo € O(n)

X = argmin f (@1, X)

Q) = argmin f (Q, X), st. Q € O (n).
Q
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A curious experiment
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Final f(Q.., X ~), varying Q,,

X n @ o

min f(Q X) = ¥~ QX|[Z+AIX],. st.Qe0M)

Apply the naive alternating directions: starting from a random
Qy €0 (n)
X = arg;ninf (Qk_l, X)

Q. = argmin f (Q, X}), st.Q € O (n).
Q
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What is going on here?
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... You can find me and see thousands more!
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Theme of this thesis

@ Certain nonconvex optimization problems become tractable
when the input data are large and random (generic).

@ Geometry of the function landscape provides important
clues for algorithm design and analysis.




Sparse dictionary learning

e e e
I
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Y=QX X cR"?P sparse
@ Algorithmic study initialized with [Olshausen, Field. '96] in
neuroscience.

@ Important algorithmic contributions from many researchers: [Lewicki,

Sejnowski.’99], [Engan et al. '99], [Aharon, Elad, Bruckstein. ‘06], many
others

@ Widely used in image processing, vision, audio, and machine learning
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Dictionary learning - the complete case

Y ~QX X=Q06V, Q~Ber(), V~N(,1)
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Dictionary learning - the complete case

@ Assume Q is square and nonsingular, then row (Y') = row (X).

@ When p > Q (nlogn), rows of X are the sparsest vectors in
row (Y') [Spielman, Wang, Wright. "12]
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Dictionary learning - the complete case

@ Assume Q is square and nonsingular, then row (Y') = row (X).

@ When p > Q (nlogn), rows of X are the sparsest vectors in
row (Y') [Spielman, Wang, Wright. "12]

min [|¢"Y ||, st.q#O0.

if we recover one row (up to scaling) of X, then we use deflation
to find the others.

Ju Sun [Advisor: Prof. John Wright] When Nonconvex Optimization Meets Big Data



Dictionary learning: the complete case

min [|¢"Y ||, s.t.q#O0.

@ Convex relaxation:
min ||¢*Y||; st.r'g=1

Provably succeeds when 6n = O (y/n), provably fails if
On = (\/nlog n) [Spielman, Wang, Wright."12].

@ Nonconvex relaxation:

Model problem

min [|lg*Yll, st [ql?=1.

many precedents, e.g., [Zibulevsky-Perlmutter, '01] in
source separation.

Ju Sun [Advisor: Prof. John Wright] When Nonconvex Optimization Meets Big Data



The model problem

Model problem

g 1 * 1 L *k
min g Y, = ];Zlq yil st llglo=1. Y eR™
=l

@ Convex objective function, but nonconvex constraint
qgec S

o If p> Q(nlogn), wh.p. every global optimizer q,
produces q;Y that recovers one row of X (up to scaling)
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Towards geometric understanding

Model problem

min  1|g*Y|, =137 |g*y;| st ql3=1 Y eR™P

Slightly modified model problem

1P
min EZh# (¢"y;) st |gla=1 Y eR™P
i=1

e Work with a smooth surrogate for |z|:

ez/:u' _|_ e_z/;uf>

hyu (z) = plog ( 5

@ Recognize the objective as a normalized N/
sum of independent random variables — S
expectation, asymptotically
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Why might this work?

W.l.o.g., assume for analysis that Y = X (i.e., A = I); we
correctly recover a row iff an algorithm produces g, = *e;,
1=1,...,n

q(w)

o f( ) hu (q*wi)

[ ]
/\"Q

W, .y Wit 1—|w||§>

° g(w) = f(g(w))

Target points are
we, =0,%eq,...,Te, 1
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Why might this work?

W.l.o.g., assume for analysis that Y = X (i.e., A = I); we
correctly recover a row iff an algorithm produces q, = *e;,
1=1,...,n

Target points are
We = O, :|:€1, ey :|:€7L71
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Formally

Lemma: Suppose 6 € [1, 1), and < cn=/%. Then

Negative curvature

° V'E[g (w)] =

0 @ VEl(w)]

[l

I, for [w| < ;5

for = < ||| < R

dor
"
gradient 0

gly convex o 'w*V‘iE[w < —6/0, for ||’UJH >R
P s =
(R=6(1)).

and so, every local optimizer of E [¢g (w)] is a target point.
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Convergence in function landscape

When does the finite-sample objective converge to the
asymptotic one, in optimization sense?

...informally, is the function geometry “nice” for some large but
finite p?
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Finite-sample result

@ Objective g (w) = % P hu (g (w)” x;) is a sum of independent RVs.

@ The proof follows a typical concentration-expectation path

Suppose 0 € [W 2) ifu<cn” 5/4 and p > 52—7;3; logn, it holds uniformly
w.h.p. that

® V’Elg (w)] = <L, for |wl]| < 45

o WSEl) > g, for o < |lw|| < R

o wEile < —C”G/for lw|| > R (R=0(1)).
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Algorithm design

... following intuition we build from the geometry:

@ Don’t know the chart g (w) ahead of time
= work directly on g € S"7 1.

@ Pull the “niceness” back to the sphere:
descent direction in w <= descent direction in g

along some curve .
@ Need to escape saddle points = Use \ /

. . ) \/
second-order information. Here, via the _ \
trust region method.

K

Trust-region on manifolds [Absil, Baker, Gallivan.
'07], also [Absil, Mahoney, Sepulchre. "08]
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Trust region method

Consider g € §"%; for§ 1 g, calculus gives

f(expg(8)) (q) + (8, V(@) + 38" (V*f(q) — (. V£(a))) § + O(||5]5)

flq
= flg;8)+0(||8]3)

where exp,(d) = qcos(||d]|2) + ﬁ sin(||8]|2)-

Basic Riemannian trust region method:

5, € arg f(a;9)

min
0ET,, 81, ||§]2<A

Qi1 = XPgq, (84)-

The trust region subproblem involves a (possibly nonconvex) quadratic
and one quadratic constraint. Solvable in polynomial time by root
finding [More+Sorensen '82] or SDP relaxation.

Ju Sun [Advisor: Prof. John Wright] When Nonconvex Optimization Meets Big Data



Pull things together

Theorem (informal)

Suppose that § € [L, 1), i < en™/1 Y = QX with Q € O (n). If
we observe p > poly (n) samples, then applying the trust region
method with fixed radius A = poly y for T = poly (n) iterations.
W.h.p, the algorithm produces a q such that

~ p [nlogp
—gq,|| <O~/
1g — q.ll < 0 »

for some target solution q, satisfying q;Y = *e’ X.

@ Using linear programming rounding + deflation, one can recover all of
X, and subsequently Q.

@ If Q is not an orthobasis, apply preconditioning, but need
p > poly (1, omin (Q) ™).

Ju Sun [Advisor: Prof. John Wright] When Nonconvex Optimization Meets Big Data



Comparison with the Literature

o Efficient algorithms with performance guarantees

[Spielman, Wang, Wright,'12] QeR™", 0=0 (1/v/n)_
[Agarwal, Anandkumar, Netrapali,'13] @ € R"™*" (m < n), 6 = O (1/+/n)
[Arora, Ge, Moitra,'13] Q e R™X™ (m < n), 0 =0 (1/vn)

@ Quasipolynomial algorithms with better guarantees
[Spielman, Wang, Wright,'12] Q € R"*", 6 = O (1/v/n)
[Arora, Bhaskara, Ge, Ma,’14]  different prob. model, # = O (1/polylog (n))

[Barak, Kelner, Steurer,’14] sum-of-squares, 6 = O (1)
@ Other theoretic work on local geometry: [Gribonval,
Schnass’11], [Geng, Wright, "11], [Schnass’14]

This work: a polynomial algorithm for squared Q, § = O(1).
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What we have done so far...

min 237 hu(@'y;) st flgllz =1 Y e RV

@ Prove as p becomes large, the nonconvex program becomes
tractable under our probabilistic setting.

@ Geometry has guided our analysis and algorithm design.

Related publications:
@ Sun, Qu, Wright. Complete dictionary recovery over the sphere. In preparation.

@ Qu, Sun, Wright. Finding a sparse vector in a subspace: Linear sparsity using alternating directions.
NIPS'14.
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Future Directions

For sparse dictionary learning;:
@ Streamline the proof and work directly in manifold
language
e With directly with the ||-||, function (partial progress)

@ Does similar thing happens if we look at structured
dictionary directly? (orthogonal group - very likely; tight
-frame - likely)

@ Algorithm side: how to understand the surprisingly
successful alternating direction method in this setting?
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Proving nonconvex recovery

Theme of this thesis

@ Certain nonconvex optimization problems become tractable
when the input data are large and random (generic).

@ Geometry of the function landscape provides important clues for
algorithm design and analysis.

° 1. Use problem structure to find a
clever initial guess.
f(=) L
2. Analyze iteration-by-iteration
in the vicinity of the optimum.
€

@ Matrix completion: [Keshevan, Oh, Montanari.’09], [Jain, Netrapali, Sanghavi.
’13], [Hardt'13], [Hardt, Wooters. "14]. Also [Meta, Jain, Dhillon."09]

@ Dictionary learning: [Agarwal, Anandkumar, Netrapali. 13 ], [Arora, Ge,
Moitra. "13], [Agarwal, Anandkumar, Jain, Netrapali.”13]

@ Tensor recovery: [Jain, Oh. "13], [Anandkumar, Ge, Janzamin. "14]

@ Phase retrieval: [Netrapali, Jain, Sanghavi."13], [Candes, Li, Soltanokoltabi. "14]
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Future Directions

For the analytic strategy:

Generalized Model Problem

1 p
min ;Zfi(q) s.t.q e M.
=1

fi’s are independent, and M is some Riemannian manifold
(S™%, 0 (n), {X : rank (X) = r}, etc)
@ Other problems: phase retrieval, matrix/tensor recovery,
recovery of signal with simultenous structures, blind
deconvolution, etc
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THANKS to Prof. John Wright and Mr. Qing Qu.

Questions?
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