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A curious experiment

An image
Patches

Y ∈ Rn×p

Seek a concise approximation: Y ≈ QX, with Q ∈ On and X

as sparse as possible.

... by solving min 1
2 ‖Y −QX‖

2
F + λ ‖X‖1 , s.t. Q ∈ On.
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A curious experiment

An image
Patches

Y ∈ Rn×p

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On.

• Objective is nonconvex: (Q,X) 7→ QX is bilinear

• Combinatorially many global minimizers: (Q,X) or

(QΠ,Π∗X) (2nn! signed permutations Π)

• Orthogonal group On is a nonconvex set



A curious experiment

An image
Patches

Y ∈ Rn×p

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On

Naive alternating directions: starting from a random Q0 ∈ On

Xk = arg min
X

f
(
Qk−1,X

)
Qk = arg min

Q
f (Q,Xk) , s.t. Q ∈ On.



A curious experiment

An image
Patches

Y ∈ Rn×p

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On

Naive alternating directions: starting from a random Q0 ∈ On

Xk = Sλ
[
Q∗k−1Y

]
Qk = UV ∗, where UΣV ∗ = SVD (Y X∗) .



A curious experiment

An image Final f(Q∞,X∞), varying Q0.

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On

Naive alternating directions: starting from a random Q0 ∈ On
Xk = Sλ

[
Q∗k−1Y

]
Qk = UV ∗, where UΣV ∗ = SVD (Y X∗) .



Global solutions to feature learning on real images?

An image
Patches

Y ∈ Rn×p

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On



Nonconvex optimization

Many problems in modern signal processing, machine learning,

statistics, ..., are most naturally formulated as nonconvex

optimization problems.

min f(x)

s. t. x ∈ D.

“easy” “hard”

Nonconvex: Even computing a local minimizer is NP-hard!

(see, e.g., [Murty and Kabadi, 1987])



This work

In practice: Heuristic algorithms are often surprisingly successful.

In theory: Even computing a local minimizer is NP-hard!

Which nonconvex optimization problems are easy?

Working hypothesis

• Certain nonconvex optimization problems have a benign structure when

the input data are large and random/generic.

• This benign structure allows ”initialization-free” iterative methods to

efficiently find a “global” minimizer.



Outline

X functions

Examples from practical problems

Sparse (complete) dictionary learning [S., Qu, Wright, ’15]

Generalized phase retrieval [S., Qu, Wright, ’16]

Other examples in the literature

Algorithms: Riemannian trust-region method

Comparison with alternatives
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A classical example: the Rayleigh quotient

For a symmetric matrix A ∈ Rn×n,

min x>Ax s.t. ‖x‖2 = 1.

Let vi the eigenvectors of A, λi the eigenvalues. Suppose

λ1 > λ2 ≥ . . . λn−1 > λn.

• Only global minimizers are ±vn
• Only global maximizers are ±v1

• All {±vi} for 2 ≤ i ≤ n− 1 are

saddle points with a directional

negative curvature.
A = diag(1, 0,−1)



X functions

X functions (qualitative version):

• (P-1) All local minimizers are also global

• (P-2) All saddle points have directional negative curvature

Thanks to (P-1), focus on finding a local minimizer!



More on (P-2): Saddle points

∇2f = diag(2,−2)

Ridable saddle

(strict saddle [Ge et al., 2015])

∇2f = diag(6x,−6y)

local shape determined by

high-order derivatives around 0



More on (P-2): Ridable-saddle functions

Consider twice continuously differentiable function f :M 7→ R,

where M is a Riemannian manifold.

(P-2)+

• (P-2A) For all local minimizers, Hess f � 0, and

• (P-2B) For all other critical points, λmin(Hess f) < 0 .

• (P-2A) =⇒ local strong convexity around any local minimizer

• (P-2B) =⇒ local directional strict concavity around local maximizers

and saddle points; particularly, all saddles are ridable (strict).



Morse’s examples ...

Definition

A smooth function f : M 7→ R is called Morse if

all critical points are nondegenerate.

All Morse functions are ridable (strict)-saddle

functions!
Marston Morse

(1892 – 1977)

The Morse functions form an open, dense subset of all smooth

functions M 7→ R.

A typical/generic function is Morse!



More on (P-2): A quantitative definition

Ridable-saddle (strict-saddle) functions A function f :M 7→ R
is (α, β, γ, δ)-ridable (α, β, γ, δ > 0 ) if any point x ∈M obeys at

least one of the following:

1) [Strong gradient] ‖grad f(x)‖ ≥ β;

2) [Negative curvature] There exists v ∈ TxM with ‖v‖ = 1

such that 〈Hess f(x)[v],v〉 ≤ −α;

3) [Strong convexity around minimizers] There exists a local

minimizer x? such that ‖x− x?‖ ≤ δ, and for all y ∈M that

is in 2δ neighborhood of x?, 〈Hess f(y)[v],v〉 ≥ γ for any

v ∈ TyM with ‖v‖ = 1.

(TxM is the tangent space of M at point x)
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Benign structure

• (P-1) All local minimizers are also global,

• (P-2A) For all local minimizers, Hess f � 0, and

• (P-2B) For all other critical points, λmin(Hess f) < 0.

... focus on finding a local minimizer
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Example I: Sparse Dictionary Learning

=⇒

• Algorithmic study initiated in

neuroscience [Olshausen and Field, 1996].

• Important algorithmic contributions from many

researchers: [Lewicki and Sejnowski, 2000, Engan et al., 1999,

Aharon et al., 2006], many others

• Widely used in image processing, visual recognition, compressive

signal acquisition, deep architecture for signal classification (see, e.g.,

[Mairal et al., 2014])



Dictionary recovery - the complete case

Given Y generated as Y = Q0X0, recover Q0 and X0.

Random Data Model

Q0 complete (square and invertible)

X0 Bernoulli(θ)-Gaussian: X0 = Ω�G,Ω ∼iid Ber (θ) ,G ∼iid N (0, 1).

• Q0 complete =⇒ row (Y ) = row (X0)

• Rows of X0 are sparse vectors in row (Y )

• When p ≥ Ω (n log n), rows of X0 are the sparsest vectors in

row (Y ) [Spielman et al., 2012]
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Dictionary recovery - the complete case

Dictionary recovery: Given Y = Q0X0, recover Q0 and X0.

Q0 square, invertible: row(Y ) = row(X0)

Rp

· · · · · ·

O

row(Y)

x0

Sparsest?

Find the sparsest vectors in row(Y ):

min
q

‖q∗Y ‖0 s.t. q 6= 0.

Nonconvex “relaxation”:

min
q

‖q∗Y ‖1 s.t. ‖q‖22 = 1.

Many precedents, e.g.,

[Zibulevsky and Pearlmutter, 2001] in blind

source separation.
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Towards geometric understanding

Model problem

minq
1
p ‖q∗Y ‖1 = 1

p

∑p
i=1 |q∗yi| s.t. ‖q‖22 = 1. Y ∈ Rn×p

Smoothed model problem

min
q

f(q)
.
=

1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

hµ (z) = µ log cosh
z

µ



An X function!

A low-dimensional example (n = 3) of the landscape when the

target dictionary Q0 is orthogonal and p→∞



From finite samples

p = 100 p→∞
When p ∼ n3 (suppressing log factors, dependence on µ), the finite

sample version is also “nice”.



The results

min f(q)
.
=

1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Theorem (Informal, S., Qu, Wright ’15)

When p is reasonably large, and θ ≤ 1/3, with high probability,

• All local minimizers produce close approximations to rows of

X0

• f is (cθ, cθ, cθ/µ,
√

2µ/7)-ridable over Sn−1 for some c > 0

Algorithms later ...



Comparison with the DL Literature

• Efficient algorithms with performance guarantees
[Spielman et al., 2012] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Agarwal et al., 2013b] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora et al., 2013] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora et al., 2015] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

• Quasipolynomial algorithms with better guarantees
[Arora et al., 2014] different model, θ = O (1/polylog (n))

[Barak et al., 2014] sum-of-squares, θ = Õ (1)

polytime for θ = O(n−ε).

• Other theoretical work on local geometry:

[Gribonval and Schnass, 2010], [Geng and Wright, 2011], [Schnass, 2014], etc

This work: the first polynomial-time algorithm for complete Q with

θ = Ω(1).
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Example II: Generalized phase retrieval

Phase retrieval: Given phaseless information of a complex signal,

recover the signal

Coherent Diffraction Imaging1

Applications: X-ray

crystallography,

diffraction imaging (left),

optics, astronomical

imaging, and microscopy

For a complex signal x ∈ Cn, given |Fx|, recover x.

1Image courtesy of [Shechtman et al., 2015]



Generalized phase retrieval

For a complex signal x ∈ Cn, given |Fx|, recover x.

Generalized phase retrieval:

For a complex signal x ∈ Cn, given measurements of the form

|a∗kx| for k = 1, . . . ,m, recover x.

... in practice, generalized

measurements by design

such as masking, grating,

structured illumination, etc
2

2Image courtesy of [Candès et al., 2015b]



A nonconvex formulation

• Given yk = |a∗kx| for k = 1, . . . ,m, recover x (up to a global

phase).

• A natural nonconvex formulation (see

also [Candès et al., 2015b])

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(y2
k − |a∗kz|2)2.

When ak’s are iid

standard complex

Gaussian vectors

and m large



A nonconvex formulation
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• A natural nonconvex formulation (see

also [Candès et al., 2015b])
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z∈Cn
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.
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1

2m

m∑
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The results

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(y2
k − |a∗kz|2)2.

Theorem (Informal, S., Qu, Wright ’16)

Let ak ∼iid CN (0, 1). When m ≥ Ω(n log3(n)), w.h.p.,

• All local (and global) minimizers are of the form xeiφ.

• f is (c, c/(n logm), c, c/(n logm))-ridable over Cn for some

c > 0.



Comparison with the literature

• SDP relaxations and their analysis:
[Candès et al., 2013a] SDP relaxation

[Candès et al., 2013b] Guarantees for m ∼ n logn, adaptive

[Candès and Li, 2014] Guarantees for m ∼ n, non-adaptive

[Candès et al., 2015a] Coded diffraction patterns

[Waldspurger et al., 2015] SDP relaxation in phase space

• Nonconvex methods (spectral init. + local refinement):
[Netrapalli et al., 2013] Spectral init. sample splitting

[Candès et al., 2015b] Spectral init. + gradient descent, m ∼ n logn.

[White et al., 2015] Spectral init. + gradient descent

[Chen and Candès, 2015] Spectral init. + truncation, m ∼ n.

This work: a global characterization of the geometry of the problem.

Algorithms succeed independent of initialization, m ∼ n log3 n.



Other measurement models for GPR

Other measurements

• Coded diffraction model [Candès et al., 2015a]

• Convolutional model (with Yonina Eldar): y = |a~ x|
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Example III: Orthogonal tensor decomposition

... generalizes eigen-decomposition of matrices M =
∑r

i=1 λiai ⊗ ai

Orthogonally decomposable (OD) d-th order tensors

T =
∑r

i=1 λia
⊗d
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

where ⊗ generalizes the usual outer product of vectors.

Orthogonal tensor decomposition: given OD tensor T , find

the components ai’s (up to sign and permutations).

Applications: independent component analysis (ICA), blind source

separation, latent variable model learning, etc (see, e.g.,

[Anandkumar et al., 2014a])
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One component each time

Focus on OD tensors of the form

T =

n∑
i=1

1 · a⊗4
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

Consider

min f(u)
.
= −T (u,u,u,u) = −

n∑
i=1

(a>i u)4 s. t. ‖u‖2 = 1

[Ge et al., 2015] proved that

• ±ai’s are the only minimizers

• f is (7/n, 1/poly(n), 3, 1/poly(n))-ridable over Sn−1
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All components in one shot

Focus on OD tensors of the form

T =

n∑
i=1

1 · a⊗4
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

Consider the “contrast” formulation

min g(u1, . . . ,un)
.
=
∑
i 6=j
T (ui,ui,uj ,uj)

=
∑
i 6=j

n∑
k=1

(a>k ui)
2(a>k uj)

2,

s. t. ‖ui‖ = 1 ∀i ∈ [n]

[Ge et al., 2015] proved that

• All local minimizers of g are equivalent (i.e., signed permuted)

copies of [a1, . . . ,an]

• g is (1/poly(n), 1/poly(n), 1, 1/poly(n))-ridable



Example IV: Phase synchronization

Synchronization: recovery from noisy/incomplete pairwise

relative measurements

• angles/phases – from ei(θi−θj) + ∆ij ;

• rotations – from RiR
−1
j + ∆ij , Ri,Rj ∈ SO(3)

• group elements – from gig
−1
j + ∆ij for gi, gj over a compact

group G

Applications: signal reconstruction, computer vision (structure

from motion, surface reconstruction), cryo-electron microscopy,

digital communications, ranking, ... (see, e.g.,

[Bandeira et al., 2014, Bandeira et al., 2015])



Example IV: Phase synchronization

Phase synchronization: Let z ∈ Cn and |z1| = · · · = |zn| = 1.

Given measurements Cij = zizj + ∆ij , recover z.

In matrix form, C = zz∗ + ∆ and assume ∆ Hermitian.

Least-squares formulation:

min
x∈Cn

‖xx∗ −C‖2F , s. t. |x1| = · · · = |xn| = 1.

Equivalent to

min
x∈CN :|x1|=···=|xn|=1

f(u)
.
= −x∗Cx



Quadratic over products of circles

C = zz∗ + ∆ and assume ∆ Hermitian

min
x∈CN :|x1|=···=|xn|=1

f(u)
.
= −x∗Cx

[Boumal, 2016] showed when ∆ is “small”,

second-order necessary conditions for optimality is also

sufficient and the global minimizers recover z.

This implies

all local minimizers are global; all saddles are ridable.

Analogous results obtained on synchronization over signs and

two-block community detection [Bandeira et al., 2016].
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Benign structure

• (P-1) All local minimizers are also global,

• (P-2A) For all local minimizers, Hess f � 0, and

• (P-2B) For all other critical points, λmin(Hess f) < 0.

... focus on escaping saddle points and finding a local

minimizer.



Algorithmic possibilities

• Second-order trust-region method (described here,

[Conn et al., 2000], [Nesterov and Polyak, 2006])

• Curvilinear search [Goldfarb, 1980]

• Noisy/stochastic gradient descent [Ge et al., 2015]

• ...



Second-order methods can escape ridable saddles

Taylor expansion at a saddle point x:

f̂(δ;x) = f(x) +
1

2
δ∗∇2f(x)δ.

Choosing δ = vneg, then

f̂(δ;x)− f(x) ≤ −1

2
|λneg|‖vneg‖2.

Guaranteed decrease in f when movement is small such that the

approximation is reasonably good.



Trust-region method - Euclidean Space

Generate iterates x0,x1,x2, . . . by

• Forming a second order approximation of the objective f(x) about xk:

f̂(δ;xk) = f(xk) + 〈∇f(xk), δ〉+
1

2
δ∗Bkδ.

and minimizing the approximation within a small radius - the trust region

δ? ∈ argmin
‖δ‖≤∆

f̂(δ;xk) (Trust-region subproblem)

• Next iterate is xk+1 = xk + δ?.

Can choose Bk = ∇2f(x(k)) or an approximation.



The trust-region subproblem

δ? ∈ arg min
‖δ‖≤∆

f̂(δ;xk) (Trust-region subproblem)

• QCQP, but can be solved in polynomial time by:

Root finding [Moré and Sorensen, 1983]

SDP relaxation [Rendl and Wolkowicz, 1997].

• In practice, only need an approximate solution (with

controllable quality) to ensure convergence.



Trust-region method - Riemannian Manifold

Local quadratic approximation:

f(expq(δ))

= f(q) + δ∗ grad f(q) +
1

2
δ∗ Hess f(q)δ︸ ︷︷ ︸

.
=f̂(δ;q)

+O(‖δ‖3).

O

q
TqSn−1

δ

expq(δ)

Sn−1

Basic Riemannian trust-region method:

δ? ∈ arg min
δ∈TqkSn−1,‖δ‖≤∆

f̂(δ; qk)

qk+1 = expqk(δ?).

More details on Riemannian TRM in [Absil et al., 2007]

and [Absil et al., 2009].



Proof of convergence

• Strong gradient or negative curvature

=⇒ at least a fixed reduction in f(x) at each iteration

• Strong convexity near a local minimizer

=⇒ quadratic convergence ‖xk+1 − x?‖ ≤ c ‖xk − x?‖2.

Theorem (Very informal)

For ridable-saddle functions, starting from an arbitrary initializa-

tion, the iteration sequence with sufficiently small trust-region size

converges to a local minimizer in polynomial number of steps.

Worked out examples in [Sun et al., 2015, Sun et al., 2016];

See also promise of 1-st order method [Ge et al., 2015, Lee et al., 2016].
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Examples from practical problems

Sparse (complete) dictionary learning [S., Qu, Wright, ’15]

Generalized phase retrieval [S., Qu, Wright, ’16]

Other examples in the literature

Algorithms: Riemannian trust-region method

Comparison with alternatives



Convexification – a recipeConvex Nonconvex
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Figure 1: Convex and nonconvex sets. A set is convex if we can select any pair of points x, x0

in the set, and the line segement joining them lies entirely within the set. The set to the left has
this property, while the set to the right does not.
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Figure 2: Two optimization problems min f(x). The objective f at left appears to be amenable
to global optimization, while the one at right appears to be more challenging.

amenable to global optimization – a “gradient descent” type algorithm, that simply determined
which direction to move by considering the slope of the graph of the function, would easily “ski”
down to the global minimum.

The notion of convexity formalizes this property. Convexity is a geometric property. It is conve-
nient to first introudce the notion of a convex set, and then extend this definition to functions. A
set C ✓ Rn is convex if for every pair of points x, x0 2 C, the line segment obtained by joining the
two points also lies entirely in C:

Definition 1.1 (Convex set). C ✓ Rn is convex if

8 x, x0 2 C, ↵ 2 [0, 1], ↵x + (1� ↵)x0 2 C. (1.2)

Figure 1 gives an example of two sets, one of which is convex and one of which is not.

Example 1.2 (Convex sets). Show that the following are convex:

• Every a�ne subspace.

• Every norm ball Bk·k = {x | kxk  1}.

• The empty set.

• Any intersection C = C1 \ C2 of two convex sets C1, C2.

2

Find a tractable convex surrogate f̂ for f .

Minimize the surrogate f̂

Prove that for well structured instances

the solution is accurate.

Separates formulations/analysis from algorithms

Beautiful mathematical results, substantial applied impact:

- Examples: sparse recovery, low-rank matrix recovery/completion

- General frameworks:

Atomic norms [Chandrasekaran et al., 2012]

Submodular sparsity inducers [Bach, 2010]

Restricted strong convexity [Negahban et al., 2009]

Conic statistical dimensions [Amelunxen et al., 2014], etc.



But... sometimes the recipe doesn’t work

The natural convex surrogates may be intractable ...

Tensor recovery [Hillar and Lim, 2013]

Nonnegative low-rank approximation [Vavasis, 2009]

... or may not work as well as we might hope.

Simultaneous structure estimation [Oymak et al., 2012]

Tensor recovery [Mu et al., 2014]

Sparse PCA [Berthet and Rigollet, 2013]

Dictionary learning [Spielman et al., 2012]

Substantial and provable gaps between the performance of known

convex relaxations and the information theoretic optimum.



Prior work: proving nonconvex recovery
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Figure 1: Convex and nonconvex sets. A set is convex if we can select any pair of points x, x0

in the set, and the line segement joining them lies entirely within the set. The set to the left has
this property, while the set to the right does not.
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Figure 2: Two optimization problems min f(x). The objective f at left appears to be amenable
to global optimization, while the one at right appears to be more challenging.

amenable to global optimization – a “gradient descent” type algorithm, that simply determined
which direction to move by considering the slope of the graph of the function, would easily “ski”
down to the global minimum.

The notion of convexity formalizes this property. Convexity is a geometric property. It is conve-
nient to first introudce the notion of a convex set, and then extend this definition to functions. A
set C ✓ Rn is convex if for every pair of points x, x0 2 C, the line segment obtained by joining the
two points also lies entirely in C:

Definition 1.1 (Convex set). C ✓ Rn is convex if

8 x, x0 2 C, ↵ 2 [0, 1], ↵x + (1� ↵)x0 2 C. (1.2)

Figure 1 gives an example of two sets, one of which is convex and one of which is not.

Example 1.2 (Convex sets). Show that the following are convex:

• Every a�ne subspace.

• Every norm ball Bk·k = {x | kxk  1}.

• The empty set.

• Any intersection C = C1 \ C2 of two convex sets C1, C2.

2

Use problem structure to find a

clever initial guess.

Analyze iteration-by-iteration

in the vicinity of the optimum.

– Matrix completion/recovery: [Keshavan et al., 2010], [Jain et al., 2013], [Hardt, 2014],

[Hardt and Wootters, 2014], [Netrapalli et al., 2014], [Jain and Netrapalli, 2014], [Sun and Luo, 2014],

[Zheng and Lafferty, 2015], [Tu et al., 2015], [Chen and Wainwright, 2015], [Sa et al., 2015],

[Wei et al., 2015]. Also [Jain et al., 2010]

– Dictionary learning: [Agarwal et al., 2013a], [Arora et al., 2013], [Agarwal et al., 2013b],

[Arora et al., 2015]

– Tensor recovery: [Jain and Oh, 2014], [Anandkumar et al., 2014c], [Anandkumar et al., 2014b],

[Anandkumar et al., 2015]

– Phase retrieval: [Netrapalli et al., 2013], [Candès et al., 2015b], [Chen and Candès, 2015],

[White et al., 2015]

– More on the webpage: http://sunju.org/research/nonconvex/

See also [Loh and Wainwright, 2011]

http://sunju.org/research/nonconvex/


This work

• We characterize the geometry, which is critical to algorithm

design whether initialization is used or not

• The geometry effectively allows arbitrary initialization



Thanks to ...

John Wright

Columbia

Qing Qu

Columbia

A Geometric Analysis of Phase Retrieval, S., Qu, Wright, ’16

Complete Dictionary Recovery over the Sphere, S., Qu, Wright, ’15

When are Nonconvex Optimization Problems Not Scary, S., Qu, Wright, NIPS

Workshop, ’15

Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating

Directions, Qu, S., Wright, ’15

Webpage on provable nonconvex heuristics:

http://sunju.org/research/nonconvex/

http://sunju.org/research/nonconvex/
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