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Convex analysis and optimization

All local minimizers are global!

(All critical points are global!)

Interior-point method (80’s–00’s)

–“Most” convex problems can be

solved efficiently!

Modeling languages (00’s–10’s)

...in fact, the great watershed in optimization isn’t between

linearity and nonlinearity, but convexity and

nonconvexity.

— R. Tyrrell Rockafellar [Rockafellar, 1993]
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In practice: Heuristic algorithms are often

surprisingly successful.

e.g., training deep neural networks—SGD

and variants, plus a few tricks
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Running app: sparsifying transform learning

Given data Y , learn Q, st Q∗Y is sparse, i.e., ‖Q∗Y ‖0 is small

image credit: Professor Yoram Bresler’s research website

– Dictionary learning: factor Y as Y ≈ AX st X is sparse

– Apps: image processing, computer vision, computational imaging

[Mairal et al., 2014]

– Cascaded with nonlinearity [Ravishankar and Wohlberg, 2018]
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One element each time

Given Y , learn ortho Q s.t. Q∗Y is sparse, i.e., ‖Q∗Y ‖0 is small.

A naive formulation:

min
q

‖q∗Y ‖0 s.t. q 6= 0.

Nonconvex “relaxation”:

min
q

f (q)
.
=

1

m
‖q∗Y ‖1 s.t. ‖q‖22 = 1.

Many precedents, e.g., [Zibulevsky and Pearlmutter, 2001] in blind source separation.

Here, inspired by [Spielman et al., 2012, Sun et al., 2015]
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Recovery setting for analysis

Given Y , learn ortho Q s.t. Q∗Y is sparse, i.e., ‖Q∗Y ‖0 is small.

To study possibility of recovery, given Q0 ortho and X0 sparse,

Q∗0 × Y = X0,

recover Q0 and X0 (up to signed permutation) .

Nonconvex “relaxation”:

min f (q)
.
=

1

m
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Toward geometric intuition

min f (q)
.
= 1

m ‖q∗Y ‖1 s.t. ‖q‖22 = 1.

A low-dimensional example (n = 3) of the landscape when the

target transformation Q0 = I and m→∞

– global mins

– saddles
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Toward geometric analysis

Smoothed model problem

min f1(q)
.
= 1

m

∑m
j=1 |q∗yj | s.t. ‖q‖22 = 1.

↓↓ smoothing ↓↓

min f(q)
.
= 1

m

∑m
i=1 hµ (q∗yi) s.t. ‖q‖22 = 1.

hµ (z) = µ log cosh z
µ

For analysis: Bernoulli-Gaussian model X0 = Ω0 ◦ V 0,

Ω0 ∼iid Ber(θ), V 0 ∼iid N (0, 1).

Sparsity parameter θ; average number of nonzeros per column is θn.
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The geometric result

min f(q)
.
= 1

m

∑m
i=1 hµ (q∗yi) s.t. ‖q‖22 = 1.

m = 100

=⇒

m→∞
Theorem (Informal, [Sun et al., 2015])

When p is reasonably large, and θ ≤ 1/3, with high probability,

All local minimizers are “global”.
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Comparison with prior results

Efficient algorithms with performance guarantees
[Spielman et al., 2012] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Agarwal et al., 2013b] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora et al., 2013] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora et al., 2015] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

Quasipolynomial algorithms with better guarantees
[Arora et al., 2014] different model, θ = O (1/polylog (n))

[Barak et al., 2014] sum-of-squares, θ = Õ (1)

polytime for θ = O(n−ε).

Other theoretical work on local geometry:

[Gribonval and Schnass, 2010], [Geng and Wright, 2011], [Schnass, 2014], etc

This work: the first polynomial-time algorithm for learning

complete Q with θ = Ω(1).

See also recent refined SOS analysis [Ma et al., 2016a] with similar guarantees.



Back to the question

Which nonconvex optimization problems are easy?

... two types of partial answers



A1: Problems with nice global landscapes

(P-1) All local minimizers are global

(P-2) All saddle points (and local maximizers) have a directional negative

curvature, i.e., λmin(Hess) < 0

∇2f = diag(2,−2)

Ridable/strict saddle (also

[Ge et al., 2015])

∇2f = diag(6x,−6y)

locally shaped by high-order derivatives at

0
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A1: Problems with nice global landscapes

All local mins are global, all saddles are strict

Eigenvalue problems (folklore!)

Sparsifying dictionary learning [Sun et al., 2015]

Generalized phase retrieval [Sun et al., 2016]

Orthogonal tensor decomposition [Ge et al., 2015]

Low-rank matrix recovery and completion

[Ge et al., 2016, Bhojanapalli et al., 2016]

Phase synchronization [Boumal, 2016]

Community detection [Bandeira et al., 2016]

Deep/shallow networks [Kawaguchi, 2016,

Lu and Kawaguchi, 2017, Soltanolkotabi et al., 2017]

Sparse blind deconvolution [Zhang et al., 2017]

Algorithms: virtually everything reasonable works!

[Conn et al., 2000, Nesterov and Polyak, 2006, Goldfarb, 1980, Jin et al., 2017]
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A2: Problems with nice local landscapesConvex Nonconvex

x
x0

x0x

Figure 1: Convex and nonconvex sets. A set is convex if we can select any pair of points x, x0

in the set, and the line segement joining them lies entirely within the set. The set to the left has
this property, while the set to the right does not.

NonconvexConvex

x

f(x)

x

f(x)

Figure 2: Two optimization problems min f(x). The objective f at left appears to be amenable
to global optimization, while the one at right appears to be more challenging.

amenable to global optimization – a “gradient descent” type algorithm, that simply determined
which direction to move by considering the slope of the graph of the function, would easily “ski”
down to the global minimum.

The notion of convexity formalizes this property. Convexity is a geometric property. It is conve-
nient to first introudce the notion of a convex set, and then extend this definition to functions. A
set C ✓ Rn is convex if for every pair of points x, x0 2 C, the line segment obtained by joining the
two points also lies entirely in C:

Definition 1.1 (Convex set). C ✓ Rn is convex if

8 x, x0 2 C, ↵ 2 [0, 1], ↵x + (1� ↵)x0 2 C. (1.2)

Figure 1 gives an example of two sets, one of which is convex and one of which is not.

Example 1.2 (Convex sets). Show that the following are convex:

• Every a�ne subspace.

• Every norm ball Bk·k = {x | kxk  1}.

• The empty set.

• Any intersection C = C1 \ C2 of two convex sets C1, C2.

2

Use problem structure to find a

clever (sometimes random) initial guess.

Analyze local search algorithms

in the vicinity of the optimum.

– Matrix completion/recovery: [Keshavan et al., 2010], [Jain et al., 2013],

[Hardt, 2014], [Hardt and Wootters, 2014], [Netrapalli et al., 2014],

[Jain and Netrapalli, 2014], [Sun and Luo, 2014], [Zheng and Lafferty, 2015],

[Tu et al., 2015], [Chen and Wainwright, 2015], [Sa et al., 2015],

[Wei et al., 2015]. Also [Jain et al., 2010]

– Dictionary learning: [Agarwal et al., 2013a], [Arora et al., 2013],

[Agarwal et al., 2013b], [Arora et al., 2015], [Chatterji and Bartlett, 2017],

[Gilboa et al., 2018]

– Tensor recovery: [Jain and Oh, 2014], [Anandkumar et al., 2014b],

[Anandkumar et al., 2014a], [Anandkumar et al., 2015]

– Phase retrieval: [Netrapalli et al., 2013], [Candès et al., 2015],

[Chen and Candès, 2015], [White et al., 2015], [Wang et al., 2016],

[Chen et al., 2018]



Nonscary nonconvex problems

Problems with nice global/local landscapes

– My webpage: http://sunju.org/research/nonconvex/

– Sun, Ju and Qu, Qing and Wright, John. When are nonconvex problems

not scary?. arXiv preprint arXiv:1510.06096 (2015).

– Jain, Prateek and Kar, Purushottam. Non-convex optimization for

machine learning. Foundations and Trends R© in Machine Learning 10.3–4

(2017): 142–336.

– Chen, Yudong and Chi, Yuejie. Harnessing structures in big data via

guaranteed low-rank matrix estimation. arXiv preprint arXiv:1802.08397

(2018).

– Chi, Yuejie and Lu, Yue M., and Chen, Yuxin. Nonconvex Optimization

Meets Low-Rank Matrix Factorization: An Overview. arXiv preprint

arXiv:1809.09573 (2018).

http://sunju.org/research/nonconvex/


Common ingredients in analysis

For smooth problems,

1st order geometry: ∇f or v>∇f (directional derivatives)

2nd order geometry: ∇2f or v>∇2fv (directional

curvatures)

What about nonsmooth, nonconvex problems?

nonsmooth: may be non-differentiable



Nonsmooth problems are everywhere

Optimization: exact penalty functions

min f(x) s. t. gi(x) ≤ 0, hj(x) = 0

−→ P (x, c) = f(x) + c

(∑
i

gi(x)+ +
∑
j

|hj(x)|

)

Robust estimation:

min
x
‖f (x)− y‖p f nonlinear

Promoting structures:

Sparse phase retrieval

Sparse principal component analysis (SPCA)

Sparse blind deconvolution

Neural networks with nonsmooth activations (e.g., ReLU)

Others [Bagirov et al., 2014, Absil and Hosseini, 2017]
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Language for nonsmooth functions?

What about nonsmooth, nonconvex problems?

1st order geometry: ∇f or v>∇f (directional derivatives)

=⇒ ?

2nd order geometry: ∇2f or v>∇2fv (directional

curvatures)

=⇒ ?



Locally Lipschitz (continuous) functions

... functions that are Lipschitz locally:

– Continuous convex and concave functions

– Continuously differentiable functions

– Distance function to a set

– Sum of two locally Lipschitz functions: e.g., weakly convex

functions (f (x) so that f(x) + ρ ‖x‖22 is convex)

– Products/Quotients of two locally Lipschitz functions

– Compositions of two locally Lipschitz functions: e.g., h (g (x))

with h convex and g ∈ C1

– ...



Clarke subdifferentials

We restrict to finite-dimensional functions, i.e.,

f : X 7→ R with X ⊂ Rn.

Rademacher’s theorem: If f is locally Lipschitz, f

is differentiable almost everywhere in X.

Definition (Clarke subdifferential [Clarke, 1990])

∂f (x)
.
= conv {v : xk → x,∇f (xk)→ v, f diff. at xk}

... due to Frank H. Clarke. Well known in optimal control and

economics
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Clarke’s subdifferential

For locally Lipschitz functions

Definition (Clarke subdifferential [Clarke, 1990])

∂f (x)
.
= conv {v : xk → x,∇f (xk)→ v, f diff. at xk}

– ∂f (x) is always nonempty, convex, and compact

– f ∈ C1, ∂f (x) = {∇f (x)}
– f convex: the usual subdifferential in convex analysis

– Most natural calculus rules hold (under regularity conditions,

Chap 2 of [Clarke, 1990])

– Optimality: x0 is local min =⇒ 0 ∈ ∂f (x0)



Language for nonsmooth functions?

What about nonsmooth, nonconvex problems?

1st order geometry: ∇f or v>∇f (directional derivatives)

=⇒ ∂f or v>∂f

2nd order geometry: ∇2f or v>∇2fv (directional

curvatures)

=⇒ motononicity of ∂f : f is convex iff

〈ux − uy,x− y〉 ≥ 0 ∀ x,y and ∀ ux ∈ ∂f (x) ,uy ∈ ∂f (y) .
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=⇒ motononicity of ∂f : f is convex iff

〈ux − uy,x− y〉 ≥ 0 ∀ x,y and ∀ ux ∈ ∂f (x) ,uy ∈ ∂f (y) .



Back to sparsifying transform learning

Given Y , learn ortho Q s.t. Q∗Y is sparse, i.e., ‖Q∗Y ‖0 is small.

min f (q)
.
= 1

m ‖q∗Y ‖1 = 1
m

∑
i |q∗yi| s.t. ‖q‖22 = 1.

Riemannian language: ∂Rf (q) = (I − qq∗) ∂f (q)

[Hosseini and Uschmajew, 2017]

For analysis: Bernoulli-Gaussian model X0 = Ω0 ◦ V 0,

Ω0 ∼iid Ber(θ), V 0 ∼iid N (0, 1). Sparsity parameter θ

When m is large, w.h.p., in a “reasonably large”

region of en:

inf 〈∂Rf (q) , q − en〉 ≥ γ ‖q − en‖
image credit: [Gilboa et al., 2018]
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Subgradient descent learns orthogonal dictionaries!

Starting from a q(0) uniformly random on Sn−1, for

k = 0, 1, 2, . . . :

q(k+1) =
q(k) − η(k)v(k)∥∥q(k) − η(k)v(k)

∥∥ for any v ∈ ∂Rf
(
q(k)

)

Ideas:

– Each runs finds an ei with constant probability

– All basis vectors found in O(n log n) independent runs

Theorem (Informal)

Assume θ ∈ [1/n, 1/2]. When m ≥ Ω
(
θ−2n4 log3 n

)
, whp, the

proposed algorithm recovers all basis vectors in polynomial time.
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Comparison with the DL literature

Algorithms working in the constant sparsity regime, i.e., θ ∈ Θ(1)

– Convex relaxation based on Sum-of-Squares (SOS):

[Barak et al., 2015, Ma et al., 2016b, Schramm and Steurer, 2017]

solving huge SDP’s or tensor decompositions

– Nonconvex relaxation based on smoothed `1: 2nd order

method [Sun et al., 2015] or 1st order method [Gilboa et al., 2018], still

expensive in computation and involved for analysis

– This work: nonconvex relaxation based directly on `1:

lightweight computation and neater analysis — compress the smoothed `1

analysis by 1/2!
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A word on technicalities

Subdifferentials are (convex) sets in general, and randomness in

data leads to random sets.

– Measure set difference: Hausdorff distance

– Expectation of random sets: selection integrals and support

functions [Aubin and Frankowska, 2009, Molchanov, 2013]

– Concentration of Minkowski sum of random sets: support

functions and concentration of empirical processes

[Molchanov, 2017, Molchanov, 2013]

The sign(·) function is not Lipschitz in the usual sense

– Careful construction of the ε-net for covering in showing

uniform convergence of the subdifferential
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Easier ways around nonsmoothness?

Ignore non-differentiable points

– Pathological examples well known

– Performance on “generic” cases not understood

Smooth out and continue

– Relatively mature for convex problems [Nesterov, 2004]

– Lack in theory for nonconvex problems [Mobahi, 2013]

Tweak around subdifferential sets

– Intuitive chain rules [Kakade and Lee, 2018]

– Setting a predefined rule—might not be reliable in

computation
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Tame nonconvexity = Live with and understand nonconvexity

Which nonconvex optimization problems are easy?

A1: problems with nice global landscapes

A2: problems with nice local landscapes

What about nonsmooth, nonconvex problems?

we’re still picking up the right language...
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Thanks to ...

John Wright

Columbia

Qing Qu

NYU

Yu Bai

Stanford

Qijia Jiang

Stanford

E. Candès

Stanford

Block-Reference Coherent Diffraction Imaging, Barmherzig, S., Lane, and Li, ’18.

Landscape Analysis of Nonsmooth Functions, S. and Candès, ’18.

Subgradient descent learns orthogonal dictionaries, Bai, Jiang, S. and Candès, ’18.

Dictionary Learning in Fourier Transform Scanning Tunneling Spectroscopy, Cheung, Shin, Lau, Chen, S.,

Zhang, Wright, and Pasupathy, ’18.

A Geometric Analysis of Phase Retrieval, S., Qu, Wright, ’16

Complete Dictionary Recovery over the Sphere, S., Qu, Wright, ’15

When are Nonconvex Optimization Problems Not Scary?, S., Qu, Wright, NIPS Workshop, ’15

Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions, Qu, S., Wright, ’15

My webpage on provable nonconvex heuristics: http://sunju.org/research/nonconvex/

http://sunju.org/research/nonconvex/


Thank you!
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