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Example ll: Sparse (Complete) Dictionary Learning [Sun et al’15]

Nonconvex Optimization at Large

min () \ f(x) \/\A/\/ﬂw)

s.t. x €D

Nonconvex Optimization Problems

In theory: NP-hard even to compute a local
minimizer

In practice: Heuristics such as gradient descent
and alternating minimization often highly
successful
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Which Nonconvex Optimization Problems are “Easy”?

We will focus on the family that all local minimizers are equally “nice” — focus on escaping local
maximizers and saddle points and finding a local minimizer
» Any local maximizer is strict at least in one direction — easy to escape
» Any saddle points are second-order (strict or ridable saddle) — second-order info can be used for
escaping

One example from the
family...

Not all saddles are second-order (ridable) — i.e., with indefinite
Hessian!
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Quantitative Characterization: Ridable (Strict-Saddle) Functions

minimizef(x) subjectto x & M.

A function f over manifold M is («, 3, v, d)-ridable («, 5, ~v, ¢ strictly positive) if any point x € M obeys at
least one of the following: (7, M is the tangent space of M at point x)

1) [Negative curvature] There exists v € T, M with ||v|| = 1 such that (Hessf(x)|v],v) < —a;

2) [Strong gradient] ||gradf(x)|| > 5;

3) [Strong convexity around minimizers] There exists a local minimizer x, such that ||z — «.|| < 9, and for
all y € M that is in 20 neighborhood of x,, (Hessf(y)|v|,v) > ~ for any v € T, M with ||v| =1, i.e., the
function f is v-strongly convex in 26 neighborhood of «,.

Example I: Eigenvector Problem [Classic]

For a symmetric matrix A € R"*",

maximizezerr €' Az subject to  ||x|| = 1.

» Critical points: {+wv;}

» Suppose A1 > A > ... \,_1 > \,. The only global minimizers are +v,,, and all {4+wv;} for2 <:<n —1 are
second-order saddle points.

» Quantitatively, the function is (c(A,—1 — \), c(An—1 — A\) /A1, c(D—1 — An), 2¢( A1 — An)/ A )-ridable over S,

Given Y, find (A, X) such that Y ~ AX, with X as sparse as possible.
When A square, invertible, row(Y ) = row(X ) — Finding sparse vectors in row(Y)
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minimizef(q) = — Z hiq'y,) subjectto |lq||,=1. (h promotes sparsity)
P

» Trivial equivalence due to sign and permutation
» Under probability model on the true X, f is (cf, c0, 0/, /2 /7)-ridable over S"~!

Example lll: Generalized Phase Retrieval [Sun et al’15]

Recover o from nonlinear measurements |a'x|*, i = 1.... m, encountered in many optic imaging systems
Coe . 1 — x _12\2
minimize,ecn f(2) = yo—- ;(yk — |la;z|")".

» Trivial equivalence by global phase offset
» The function f is (c,c¢/(nlogm), ¢, c/(nlogm))-ridable

Example IV: Tensor Decomposition and ICA [Ge et al’ 15]

Given orthogonal decomposable d-th order tensors 7, i.e., T =>_._, a?d, a;a;=0;;V1ij (a; € R"Y, find
a; S up to sign and permutation.

minimizeg(wr, ..., wy) = ¥ T(w, wi,uj,uy) = » Y (ajw)(aju;)’, subject to |lu;|| =1Vi € [r]
i#] i£] k=1
All local minimizers of ¢ are equivalent (i.e., signed permuted) copies of |a,, ..., a,.|. Moreover, g is

(1/poly(r), 1/poly(r), 1,1/poly(r))-ridable.

Algorithm: Second-order Trust-region Method

lteratively construct approximation of the form

The next iterate determined by minimizing the quadratic approximation within a
small radius A:

o) = 4remin ]/‘\(5; az(k)> .

The next iterate is obtained by retracting the resulting vector back to the manifold:
w(kH) = Rw(k)(w(k) -+ 5<k+1)).
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