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Nonconvex Optimization at Large

Nonconvex Optimization Problems

In theory: NP-hard even to compute a local
minimizer
In practice: Heuristics such as gradient descent
and alternating minimization often highly
successful

Which Nonconvex Optimization Problems are “Easy”?

We will focus on the family that all local minimizers are equally “nice” – focus on escaping local
maximizers and saddle points and finding a local minimizer
I Any local maximizer is strict at least in one direction – easy to escape
I Any saddle points are second-order (strict or ridable saddle) – second-order info can be used for

escaping

Not all saddles are second-order (ridable) – i.e., with indefinite
Hessian!

One example from the
family...
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Quantitative Characterization: Ridable (Strict-Saddle) Functions

minimizef (x) subject to x ∈M.

A function f over manifoldM is (α, β, γ, δ)-ridable (α, β, γ, δ strictly positive) if any point x ∈M obeys at
least one of the following: (TxM is the tangent space ofM at point x)
1) [Negative curvature] There exists v ∈ TxM with ‖v‖ = 1 such that 〈Hessf (x)[v],v〉 ≤ −α;
2) [Strong gradient] ‖gradf (x)‖ ≥ β;
3) [Strong convexity around minimizers] There exists a local minimizer x? such that ‖x− x?‖ ≤ δ, and for
all y ∈M that is in 2δ neighborhood of x?, 〈Hessf (y)[v],v〉 ≥ γ for any v ∈ TyM with ‖v‖ = 1, i.e., the
function f is γ-strongly convex in 2δ neighborhood of x?.

Example I: Eigenvector Problem [Classic]

For a symmetric matrix A ∈ Rn×n,
maximizex∈Rn x>Ax subject to ‖x‖ = 1.

I Critical points: {±vi}
I Suppose λ1 > λ2 ≥ . . . λn−1 > λn. The only global minimizers are ±vn, and all {±vi} for 2 ≤ i ≤ n− 1 are

second-order saddle points.
I Quantitatively, the function is (c(λn−1 − λn), c(λn−1 − λn)/λ1, c(λn−1 − λn), 2c(λn−1 − λn)/λ1)-ridable over Sn−1.

Example II: Sparse (Complete) Dictionary Learning [Sun et al’15]

Given Y , find (A,X) such that Y ≈ AX, with X as sparse as possible.
When A square, invertible, row(Y ) = row(X) =⇒ Finding sparse vectors in row(Y )

minimizef (q)
.
=

1

p

p∑
k=1

h(q>yk) subject to ‖q‖2 = 1. (h promotes sparsity)

I Trivial equivalence due to sign and permutation
I Under probability model on the true X, f is (cθ, cθ, cθ/µ,

√
2µ/7)-ridable over Sn−1

Example III: Generalized Phase Retrieval [Sun et al’15]

Recover x from nonlinear measurements |a∗ix|2, i = 1, . . . ,m, encountered in many optic imaging systems

minimizez∈Cnf (z)
.
=

1

4m

m∑
k=1

(yk − |a∗kz|2)2.

I Trivial equivalence by global phase offset
I The function f is (c, c/(n logm), c, c/(n logm))-ridable

Example IV: Tensor Decomposition and ICA [Ge et al’ 15]

Given orthogonal decomposable d-th order tensors T , i.e., T =
∑r

i=1a
⊗d
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ , find

ai’s up to sign and permutation.

minimizeg(u1, . . . ,ur)
.
=
∑
i 6=j
T (ui,ui,uj,uj) =

∑
i6=j

r∑
k=1

(a>kui)
2(a>kuj)

2, subject to ‖ui‖ = 1 ∀i ∈ [r].

All local minimizers of g are equivalent (i.e., signed permuted) copies of [a1, . . . ,ar]. Moreover, g is
(1/poly(r), 1/poly(r), 1, 1/poly(r))-ridable.

Algorithm: Second-order Trust-region Method

Iteratively construct approximation of the form

f̂ (δ;x(k))
.
= f (x(k)) +

〈
δ, gradf (x(k))

〉
+

1

2

〈
Hessf (x(k))[δ], δ

〉
The next iterate determined by minimizing the quadratic approximation within a
small radius ∆:

δ(k+1) .= arg min
δ∈T

x(k)
M,‖δ‖2≤∆

f̂
(
δ;x(k)

)
. O

q
TqSn−1

δ⋆

expq(δ⋆)

Sn−1

The next iterate is obtained by retracting the resulting vector back to the manifold:
x(k+1) = Rx(k)(x(k) + δ(k+1)).
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