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A curious experiment

Try to learn a concise approximation: Y ≈ QX , with Q ∈ On
and X as sparse as possible.

... by solving min 1
2 ‖Y −QX‖

2
F + λ ‖X‖1 , s.t. Q ∈ On.
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A curious experiment

min f (Q,X)
.
= 1

2 ‖Y −QX‖
2
F + λ ‖X‖1 , s.t. Q ∈ On.

Objective is nonconvex: (Q,X) 7→ QX is bilinear
Combinatorially many isolated global minima: (Q,X)
or (QΠ,Π∗X) (2nn! many signed permutations Π)
Orthogonal group On is a nonconvex set
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A curious experiment

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On

Apply the naive alternating directions: starting from a random
Q0 ∈ On

Xk = arg min
X

f
(
Qk−1,X

)
Qk = arg min

Q
f (Q,Xk) , s.t. Q ∈ On.
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A curious experiment

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On

Apply the naive alternating directions: starting from a random
Q0 ∈ On

Xk = Sλ
[
Q∗k−1Y

]
Qk = UV ∗, where UΣV ∗ = SVD (Y X∗) .
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Global solutions of feature learning on real images?

min f (Q,X)
.
=

1

2
‖Y −QX‖2F + λ ‖X‖1 , s.t. Q ∈ On
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Nonconvex optimization in practice

Many problems in modern signal processing, data
analysis, statistical estimation, ..., are most naturally
formulated as nonconvex (possibly also nonsmooth)
optimization problems.
Heuristic algorithms are often surprisingly successful...
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Nonconvex optimization in theory

Classical picture:

min f(x)

s. t. x ∈ D.

“easy” “hard”

NCVX: Even computing a local minimizer is NP-hard! (see,
e.g., [Murty and Kabadi, 1987])
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This work - a step towards bridging the gap

In practice: Heuristic algorithms are often surprisingly
successful...
In theory: Even computing a local minimizer is NP-hard!

Which nonconvex optimization problems are easy?

Working hypothesis

Certain nonconvex optimization problems have a benign
structure when the input data are large and/or
random/generic.
This benign structure allows ”initialization-free” iterative
methods to efficiently find a “global” minimizer.

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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1 The “X” (second-order convex?) functions

2 Examples from practical problems
Sparse (complete) dictionary learning [Sun et al., 2015a]
Generalized phase retrieval [Sun et al., 2015b]
Orthogonal tensor decomposition [Ge et al., 2015]

3 Algorithms: Riemannian trust-region method

4 Comparison with alternatives
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A classical example ...

For a symmetric matrix A ∈ Rn×n and

f(x)
.
= x>Ax ∀ x : ‖x‖2 = 1.

Critical points: {±vi}

Suppose λ1 > λ2 ≥ . . . λn−1 > λn.
The only global minimizers are
±vn
The only global maximizers are
±v1

All {±vi} for 2 ≤ i ≤ n− 1 are
saddle points with a directional
negative curvature.

A = diag(1, 0,−1)

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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X (second-order convex?) functions

X functions (qualitative version):

(P-1) All local minimizers are also global
(P-2) All saddle points have directional negative
curvature

Thanks to (P-1), focus on finding a local minimizer!
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More on (P-2): Saddle points

∇2f = diag(2,−2)
Ridable saddle

(strict saddle [Ge et al., 2015])

∇2f = diag(6x,−6y)
local shape determined by

high-order derivatives around 0
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More on (P-2): Ridable-saddle functions

Consider twice continuously differentiable function f :M 7→ R,
whereM is a Riemannian manifold.

(P-2)+

(P-2A) For all local minimizers, Hess f � 0, and
(P-2B) For all other critical points, λmin(Hess f) < 0 .

(P-2A) =⇒ local strong convexity around any local minimizer

(P-2B) =⇒ local directional strict concavity around local
maximizers and saddle points; particularly, all saddles are
ridable (strict).

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Morse’s examples ...

Definition
A smooth function f :M 7→ R is called Morse if

all critical points are nondegenerate.

All Morse functions are ridable (strict)-saddle
functions!

Marston Morse
(1892 – 1977)

The Morse functions form an open, dense subset of all smooth
functionsM 7→ R.

A typical/generic function is Morse!
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More on (P-2): A quantitative definition

Ridable-saddle (strict-saddle) functions A function
f :M 7→ R is (α, β, γ, δ)-ridable (α, β, γ, δ > 0 ) if any point
x ∈M obeys at least one of the following:

1) [Strong gradient] ‖grad f(x)‖ ≥ β;
2) [Negative curvature] There exists v ∈ TxM with ‖v‖ = 1
such that 〈Hess f(x)[v],v〉 ≤ −α;
3) [Strong convexity around minimizers] There exists a
local minimizer x? such that ‖x− x?‖ ≤ δ, and for all
y ∈M that is in 2δ neighborhood of x?,
〈Hess f(y)[v],v〉 ≥ γ for any v ∈ TyM with ‖v‖ = 1.

(TxM is the tangent space ofM at point x)
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Outline

1 The “X” (second-order convex?) functions

2 Examples from practical problems
Sparse (complete) dictionary learning [Sun et al., 2015a]
Generalized phase retrieval [Sun et al., 2015b]
Orthogonal tensor decomposition [Ge et al., 2015]

3 Algorithms: Riemannian trust-region method

4 Comparison with alternatives
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Benign structure

(P-1) All local minimizers are also global,
(P-2A) For all local minimizers, Hess f � 0, and
(P-2B) For all other critical points, λmin(Hess f) < 0.

... focus on finding a local minimizer
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Example I: Sparse Dictionary Learning

=⇒

Algorithmic study initialized with [Olshausen and Field, 1996]
in neuroscience.

Important algorithmic contributions from many researchers: e.g.,
[Lewicki and Sejnowski, 2000, Engan et al., 1999,
Aharon et al., 2006], many others

Widely used in image processing, recently used in visual
recognition, compressive signal acquisition, deep architecture for
signal classification (see, e.g., [Mairal et al., 2014])

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Dictionary recovery - the complete case

Dictionary recovery – given Y generated as Y = Q0X0, recover
Q0 and X0.

Our Model
Q0 complete (square and invertible),
X0 = Ω�G,Ω ∼i.i.d. Ber (θ) ,G ∼i.i.d. N (0, 1) .

Q0 complete =⇒ row (Y ) = row (X0) =⇒ rows of X0 are
sparse vectors in row (Y )

When p ≥ Ω (n log n), rows of X0 are the sparsest vectors in
row (Y ) [Spielman et al., 2012]

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Dictionary recovery - the complete case

Dictionary recovery – given Y generated as Y = Q0X0, recover
Q0 and X0.

Our Model
Q0 complete (square and invertible),
X0 = Ω�G,Ω ∼i.i.d. Ber (θ) ,G ∼i.i.d. N (0, 1) .

row(Y ) = row(X0)

Find the sparse vectors in row(Y )!

Rp

· · · · · ·

O

row(Y)

x0

Sparsest?
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Dictionary learning: the complete case
Rp

· · · · · ·

O

row(Y)

x0

Sparsest?

min ‖q∗Y ‖0 s.t. q 6= 0.

Nonconvex “relaxation”:

Model problem

min ‖q∗Y ‖1 s.t. ‖q‖22 = 1.

many precedents, e.g., [Zibulevsky and Pearlmutter, 2001]
in blind source separation.
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Towards geometric understanding

Model problem

min 1
p ‖q∗Y ‖1 = 1

p

∑p
i=1 |q∗yi| s.t. ‖q‖22 = 1. Y ∈ Rn×p

Slightly modified model problem

min f(q)
.
=

1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Work with a smooth surrogate for
|z|:

hµ (z) = µ log cosh
z

µ

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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An X function!

A low-dimensional example (n = 3) of the landscape when the
target dictionary A0 is orthogonal
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The results

min f(q)
.
=

1

p

p∑
i=1

hµ (q∗yi) s.t. ‖q‖22 = 1. Y ∈ Rn×p

Theorem (Informal, [Sun et al., 2015a])

When p is reasonably large, and θ constant, with high probability,
All local minimizers produce close approximations to rows of X0

f is (cθ, cθ, cθ/µ,
√

2µ/7)-ridable over Sn−1 for some c > 0

Algorithms later ...

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Comparison with the DL Literature

Efficient algorithms with performance guarantees
[Spielman, Wang, Wright,’12] Q ∈ Rn×n, θ = Õ

(
1/
√
n
)

[Agarwal, Anandkumar, Netrapali,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora, Ge, Moitra,’13] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

[Arora, Ge, Ma, Moitra,’15] Q ∈ Rm×n (m ≤ n), θ = Õ
(
1/
√
n
)

Quasipolynomial algorithms with better guarantees
[Arora, Bhaskara, Ge, Ma,’14] different prob. model, θ = O (1/polylog (n))

[Barak, Kelner, Steurer,’14] sum-of-squares, θ = Õ (1)

Other theoretic work on local geometry: [Gribonval,
Schnass’11], [Geng, Wright, ’11], [Schnass’14]

This work: the first polynomial-time algorithm for complete A
with θ = Ω(1).

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Outline

1 The “X” (second-order convex?) functions

2 Examples from practical problems
Sparse (complete) dictionary learning [Sun et al., 2015a]
Generalized phase retrieval [Sun et al., 2015b]
Orthogonal tensor decomposition [Ge et al., 2015]

3 Algorithms: Riemannian trust-region method

4 Comparison with alternatives
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Example II: Generalized phase retrieval

Phase retrieval: Given phaseless information of a complex
signal, recover the signal

Coherent Diffraction Imaging1

Applications: X-ray
crystallography,
diffraction imaging
(left), optics,
astronomical imaging,
and microscopy

For a complex signal x ∈ Cn, given |Fx|, recover x.

1Image courtesy of [Shechtman et al., 2015]
Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Generalized phase retrieval

For a complex signal x ∈ Cn, given |Fx|, recover x.

Generalized phase retrieval:

For a complex signal x ∈ Cn, given measurements of the
form |a∗kx| for k = 1, . . . ,m, recover x.

... in practice, generalized
measurements by design
such as masking, grating,
structured illumination,
etc 2

2Image courtesy of [Candès et al., 2015a]
Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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A nonconvex formulation

Given yk = |a∗kx|2 for k = 1, . . . ,m, recover x (up to a
global phase).
A natural nonconvex formulation (see
also [Candès et al., 2015a])

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(yk − |a∗kz|2)2.

When ak’s are iid
standard complex
Gaussian vectors
and m large

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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The results

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(yk − |a∗kz|2)2.

Theorem (Informal, [Sun et al., 2015b])

When m ≥ Ω(npolylog(n)), with high probability,
All local (and global) minimizers are x with a global phase shift
f is (c, c/(n logm), c, c/(n logm))-ridable over Cn for some
c > 0
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Other measurement models for GPR

Other measurements
Coded diffraction model [Candès et al., 2015b]

Convolutional model (with Prof. Yonina Eldar)

y = |a⊗ x| .2

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Example III: Orthogonal tensor decomposition

... generalizes eigen-decomposition of matrices

Orthogonally decomposable (OD) d-th order tensors

T =

r∑
i=1

λia
⊗d
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

where ⊗ generalizes the usual outer product of vectors.

Orthogonal tensor decomposition: given OD tensor T ,
find the components ai’s (up to sign).

Applications: independent component analysis (ICA), blind
source separation, latent variable model learning, etc (see, e.g.,
[Anandkumar et al., 2014])

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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One component each time

Focus on OD tensors of the form

T =

r∑
i=1

a⊗4
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

Consider

min f(u)
.
= −T (u,u,u,u) = −

r∑
i=1

(a>i u)4 s. t. ‖u‖2 = 1

[Ge et al., 2015] proved that
f is (7/r, 1/poly(r), 3, 1/poly(r))-ridable over Sn−1

±ai’s are the only minimizers

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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All components in one shot

Focus on OD tensors of the form

T =

r∑
i=1

a⊗4
i , a>i aj = δij ∀ i, j, (ai ∈ Rn ∀ i)

Consider

min g(u1, . . . ,ur)
.
=
∑
i 6=j
T (ui,ui,uj ,uj)

=
∑
i 6=j

r∑
k=1

(a>k ui)
2(a>k uj)

2,

s. t. ‖ui‖ = 1 ∀i ∈ [r].

[Ge et al., 2015] proved that
g is (1/poly(r), 1/poly(r), 1, 1/poly(r))-ridable
All local minimizers of g are equivalent (i.e., signed
permuted) copies of [a1, . . . ,ar]

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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2 Examples from practical problems
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3 Algorithms: Riemannian trust-region method
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Benign structure

(P-1) All local minimizers are also global,
(P-2A) For all local minimizers, Hess f � 0, and
(P-2B) For all other critical points, λmin(Hess f) < 0.

... focus on escaping saddle points and maximizers and
finding a local minimizer.

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Algorithmic possibilities

Second-order trust-region method (described here,
[Conn et al., 2000])
Curvilinear search [Goldfarb, 1980]
Noisy/stochastic gradient descent [Ge et al., 2015]
...

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Second-order method can escape ridable saddles

Taylor expansion at a saddle point x:

f̂(δ;x) = f(x) +
1

2
δ∗∇2f(x)δ.

Choosing δ = vneg, then

f̂(δ;x)− f(x) ≤ −1

2
|λneg|‖vneg‖2.

Function value decreasing is guaranteed when movement is
small such that the approximation is reasonably good.

Similarly for the maximizers we consider.

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Trust region method - Euclidean Space

min
x∈Rn

f(x)

Consider an iterate sequence x0,x1,x2, . . .

At the current iterate xk, form a second-order approximation:

f̂(δ;xk) = f(xk) + 〈∇f(xk), δ〉+
1

2
δ∗Bkδ.

and minimize the approximation within a small radius - the trust region

δ? = argmin
‖δ‖≤∆

f̂(δ;xk) (Trust-region subproblem)

Next iterate is xk+1 = xk + δ?

Bk can be chosen to be the Hessian, or approximations.

We focus on Bk = ∇2f(x(k)).

Sun, Qu, and Wright When Are Nonconvex Optimization Problems Not Scary?
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Trust region method - Riemannian Manifold

O

q
TqSn−1

δ

expq(δ)

Sn−1 Take an example: f : Sn−1 7→ R.

expq(δ)
.
= q cos ‖δ‖ + δ/‖δ‖ · sin ‖δ‖

For q ∈ Sn−1 and δ ∈ TqSn−1, define
fq : TqSn−1 7→ R as fq

.
= f(expq(δ))

Taylor’s theorem implies

f(expq(δ)) = f(q) + δ∗∇f(q) + 1

2
δ∗(∇2f(q)− q∗∇f(q)I)δ +O(‖δ‖3)

= f(q) + δ∗ grad f(q) +
1

2
δ∗Hess f(q)δ︸ ︷︷ ︸

.
=f̂qk

(δ;q)

+O(‖δ‖3).

Basic Riemannian trust-region method:

δ? ∈ argmin
δ∈Tqk

Sn−1,‖δ‖≤∆

f̂qk (δ; qk)

qk+1 = expqk (δ?).

More details on Riemannian TRM in [Absil et al., 2007]
and [Absil et al., 2009].
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The trust-region subproblem

δ? ∈ arg min
δ∈TqkSn−1,‖δ‖≤∆

f̂qk(δ; qk) (Trust-region subproblem)

If the norm is `2, quadratic constrained quadratic program
(QCQP - hard in general)
This case can be exactly solved by root
finding [Moré and Sorensen, 1983] or SDP
relaxation [Rendl and Wolkowicz, 1997].
In practice, only approximate solution (with controllable
quality) needed to ensure convergence.
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Proof of convergence

When the gradient is strong or the curvature is negative,
function value decrease by at least a fixed amount;

Under mild conditions, the sequence will ultimately move into
the strongly convex region around a local minimizer;

The algorithm acts like a typical second-order method on convex
function and local quadratic convergence in sequence is
observed.

Theorem (Very informal)

For ridable-saddle functions, starting from an arbitrary
initialization, the iteration sequence with sufficiently small step
size (trust-region size) converges to a local minimizer in polynomial
number of steps.

worked out examples in [Sun et al., 2015a, Sun et al., 2015b];
see also promise of 1-st order method [Ge et al., 2015].
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Outline

1 The “X” (second-order convex?) functions

2 Examples from practical problems
Sparse (complete) dictionary learning [Sun et al., 2015a]
Generalized phase retrieval [Sun et al., 2015b]
Orthogonal tensor decomposition [Ge et al., 2015]

3 Algorithms: Riemannian trust-region method

4 Comparison with alternatives
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Convexification

Convexity allows separation of formulations/analysis
from algorithms.
Vast array of beautiful mathematical results, substantial
applied impact:

Important examples: sparse recovery, low-rank matrix
recovery/completion
General frameworks: atomic norms [Chandrasekaran et al., 2012],
submodular sparsity inducers [Bach, 2010], restricted strong
convexity [Negahban et al., 2009], conic statistical
dimensions [Amelunxen et al., 2014], etc
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But... sometimes the recipe doesn’t work

The natural convex surrogates may be intractable:
Tensor recovery [Hillar and Lim, 2013]
Nonnegative low-rank approximation [Vavasis, 2009]

Or the natural relaxations subject to fundamental limitations:
Simultaneous structure estimation [Oymak et al., 2012]
Tensor recovery [Mu et al., 2013]
Sparse PCA [Berthet and Rigollet, 2013]
Dictionary learning [Spielman et al., 2012]

In all these cases, there are substantial and provable gaps
between the performance of known convex relaxations and
the information theoretic optimum.

In addition, computations are often expensive and impractical
(e.g., SDP lifting) even for medium-scale problems.
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Prior work: proving nonconvex recovery

Matrix completion/recovery: [Keshevan, Oh, Montanari.’09], [Jain, Netrapali,
Sanghavi. ’13], [Hardt’13], [Hardt, Wooters. ’14], [Netrapalli et al. ’14], [Jain +
Netrapalli,’14], [Zheng, Lafferty.’15], [Tu et al’15]. Also [Meta, Jain, Dhillon.’09]

Dictionary learning: [Agarwal, Anandkumar, Netrapali. ’13 ], [Arora, Ge,
Moitra. ’13], [Agarwal, Anandkumar, Jain, Netrapali.’13], [Arora, Ge, Ma,
Moitra. ’15]

Tensor recovery: [Jain, Oh. ’13], [Anandkumar, Ge, Janzamin. ’14]

Phase retrieval: [Netrapali, Jain, Sanghavi.’13], [Candes, Li, Soltanokoltabi. ’14],
[Chen, Candes.’15]

Also recovery in statistical sense, ..., e.g., [Loh + Wainwright’12]
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Our approach

We characterize the geometry, which is critical to
algorithm design whether initialization is used or not
The geometry effectively allows arbitrary initialization
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