IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

High-Speed Channel Modeling with Machine
Learning Methods for Signal Integrity Analysis

Tianjian Lu, Member, IEEE, Ju Sun, Member, IEEE, Ken Wu, Member, IEEE,
and Zhiping Yang, Senior Member, IEEE

Abstract—In this work, machine learning methods are applied
to high-speed channel modeling for signal integrity analysis. Lin-
ear, support vector and deep neural network (DNN) regressions
are adopted to predict the eye-diagram metrics, taking advantage
of the massive amounts of simulation data gathered from prior
designs. The regression models, once successfully trained, can
be used to predict the performance of high-speed channels
based on various design parameters. The proposed learning-
based approach saves complex circuit simulations and substantial
domain knowledge altogether, in contrast to alternatives that
exploit novel numerical techniques or advanced hardware to
speed up traditional simulations for signal integrity analysis. Our
numerical examples suggest that both support vector and DNN
regressions are able to capture the nonlinearities imposed by
transmitter and receiver models in high-speed channels. Overall,
DNN regression is superior to support vector regression in
predicting the eye-diagram metrics. Moreover, we also investigate
the impact of various tunable parameters, optimization methods,
and data preprocessing on both the learning speed and the
prediction accuracy for the support vector and DNN regressions.

Index Terms—Deep Neural Networks, Eye Diagram, High-
Speed Channel, Machine Learning, Signal Integrity, Support
Vector Regression.

I. INTRODUCTION

A high-speed, chip-to-chip system-level design as shown in
Fig. 1(a) entails intensive simulations prior to manufacturing,
for both verification and optimization purposes. In the area
of signal integrity, there are two major types of simulation
techniques: electromagnetic solvers and circuit simulators [1].
Electromagnetic solvers are often used to extract models
for high-speed interconnects such as IC packages, printed
circuit boards (PCBs), and connectors. To evaluate the per-
formance at the system level, most high-speed designs use
the eye diagram. As shown in Fig. 2, the eye diagram is
created by first segmenting and then overlaying the transient
waveforms obtained from a circuit simulator. In addition to
model extraction, simulations are also performed to predict the
impact of manufacturing variances on signal integrity, because
variations of design parameters during manufacturing may
alter the characteristics of a well-designed high-speed channel.
Simulations invariably happen in many iterations and across
various design stages. Consequently, substantial amounts of
simulation data are generated.

Tianjian Lu, Ken Wu, and Zhiping Yang are with Google Inc., 1600
Amphitheatre Pkwy, Mountain View, CA 94043, USA, e-mail: {tianjianlu,
kenzwu, zhipingyang} @google.com.

Ju Sun is with the Mathematics Department of Stanford University,
450 Serra Mall, Building 380, Stanford, CA 94305-2125, USA, e-mail:
sunju@stanford.edu

Receiver
Chip

:| Package

PCB

Transmitter
Chip

(@)

Transmitter Interconnect Receiver

Dielectric
Constant

Trace
‘Width/Spacing

Pre-emphasis Equalization

Parameters

Jitter Substrate Loss Jitter

Thickness Tangent

(b

Fig. 1: (a) The topology of a high-speed channel and (b) the
design parameters considered in this work.

Voltage

Time

Fig. 2: Tllustration of eye height and width in an eye diagram.

The simulation techniques employed in characterizing high-
speed channels for signal integrity can be computationally
expensive. There are efforts in utilizing domain decomposition
schemes and parallel computing to enhance the efficiency of
electromagnetic solvers on model extraction [2], [3]. Model-
order reductions techniques are also proposed to achieve a fast
frequency sweep in extracting models over a broadband [4],
[5]. Moreover, there are approaches to efficiently generating
eye diagrams by utilizing shorter data patterns as inputs [6] or
using statistical methods [7].

In this paper, we take a different route and propose ad-
dressing the efficiency issue by taking advantage of the
existing simulation data. A learning-based model is trained
on the prior data. Once the training is completed, we obtain
a reasonable model characterizing the underlying high-speed
channel—performance metrics such as eye height and width

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

can be predicted from the trained model for varying design
parameters. The proposed approach requires no complex cir-
cuit simulations or substantial domain knowledge. The model
training can be achieved within a reasonable amount of time
over modern computing hardware, and the obtained models
can be reused for future designs, which amortizes the training
cost. Once the training concludes, prediction can be performed
in a highly efficient manner.

We consider eight design parameters for a high-speed chan-
nel in this work; they are tabulated in Fig. 1(b). We use eye
height and eye width as the performance metrics, which are
systematically used to assess the system-level performance of
high-speed channels. The technical task here is to predict the
eye height and eye width for given design specifications. For
a given high-speed channel, suppose there is a deterministic
function that maps the design parameters to the eye height
(width). The learning problem here is to learn this function
from the available data samples. In machine learning term,
this is a regression problem.

We study three regression methods in this work, namely,
linear regression [8], support vector regression (SVR) [9],
and deep neural network (DNN) regression [10]. Due to the
nonlinearity imposed by the transmitter and receiver models,
linear regression, which assumes a linear model for the un-
derlying function, fails to make accurate predictions of eye
height and width. SVR is able to handle nonlinearities with
kernel mappings [9], [11], [12]. However, DNN regression is
superior to SVR in terms of empirical prediction accuracy. !

Deep neural networks have recently made great progress
in selecting relevant results for web search, making recom-
mendations in online shopping, identifying objects in images,
and transcribing speeches into texts, to name a few [10], [14].
To model high-speed channels, a DNN takes in raw design
parameters as the input and passes them through layers of
linear and nonlinear transformations; see Fig. 4. With adequate
number of such transformations, the DNN approximates the
underlying parameter-performance function reasonably well.
The better performance of DNN over SVR observed in our
numerical examples may be partly explained by the universal
approximation property of DNN [15], which (roughly) says
any function with reasonable regularity can be approximated
with controlled errors by DNN with appropriate parameters.

II. REGRESSION METHODS

The regression-based learning process specialized to our
problem consists of three components [12]: a generator, a
supervisor, and a regressor, as shown in Fig. 3. The generator
first produces one set of input parameters (see Fig. 1(b))
of a high-speed channel, contained in a vector {«}. The
supervisor, which acts as a knowledgeable oracle, returns the
eye height or width y corresponding to {x}. The learning
process is essentially the selection of the right regression
function f({z},{6}), where {6} contains the parameters to

!Other than the higher accuracy, DNN regression is more natural than SVR
in handling the multi-output situation [13], in which the eye height and width
can be predicted simultaneously through the same neural network without any
additional change in the algorithm framework.

Generator Supervisor |

Regressor

Fig. 3: Regression-based learning [12] consists of a generator,
a supervisor, and a regressor. At training, the regressor sees
sufficiently many ({z},y) pairs generated by the generator
and tries to match the supervisor in predicting y given {x}.
After training, given an input z the regressor returns g, which
should be as close as the supervisor’s output .

be learned, such that the prediction made by f approximates
the value returned by the supervisor uniformly over all possible
input {z}. The selection is based on a set of N training
examples, denoted as ({z;},y;) for i = 1,...,N. In this
section, we describe the three regression methods used in this
work, namely, linear, support vector, and DNN regressions.

A. Linear Regression

The linear regression accommodates multiple input param-
eters of a high-speed channel and predicts its the eye height
or eye width through

y = {8} {z}" + Bo, (1)

where {x} represents the input parameters, {8} contains the
weights, and (3, is a constant offset. The weights {8} and the
offset By are chosen by solving the following least-squares

problem:
N

minimize sy 5, > (vi — §i)° -)
i=1
In other words, one seeks to minimize the total squared
prediction errors over the training examples. This optimization
problem can be reliably solved to large scales (i.e., when more
design parameters are considered such that {z} is a huge
vector) by mature numerical solvers [16].

B. Support Vector Regression

In e-SVR [11], [12], instead of minimizing the total squared
errors, one hopes to make the prediction errors uniformly
bounded by a parameter £ > 0, meanwhile to keep the model
as “simple” as possible. We start with the case when the
prediction model is still linear, i.e.,

y = {w}{z} +b, 3)

where {w} represents weights and b denotes the bias term. To
promote the model simplicity, one can minimize the quadratic
function

1
E = {w} {w}". (4)
To ensure bounded prediction errors by ¢, we require
Yi — <{w} {z:}" + b)’ <e Vi (5)

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

Together, we arrive at a convex optimization problem

())"
yi—{wh{a} —b<e vi, ©
{w} {%‘}T +b—y; <e, Vi.

minimize .} p

subject to

For a pre-specified ¢, there may not be a feasible linear
function that obeys the constraints in (6). Slack variables {£}
and {£*} are hence introduced to add in flexibility; such
flexibility is meanwhile penalized in the objective, resulting
in the notable e-SVR formulation [12]:

N
R TR ORRN) ICRCS
yi —{wi{z} —b<e+¢,vi, D
{fwh{z:}" +b—y; <e+&, Vi,
& >0, & >0, Vi,

subject to

where C' is a tunable parameter to the optimization.

For the above constrained convex optimization problem,
by introducing Lagrange multipliers to handle the inequality
constraints and after simplification [11], we arrive at the dual
problem:

maximize g ({a}, {8})
N N (8)
subject to Zai = Zﬁi, @i, 3; €10,C] Vi
i=1 i=1
where the dual objective function is
N

1j:1

9 ({a},{8}) = = Bj) {wi} {zy)

l\D\»—t
M=

i

E’qz

(o + i) +Zyl —Bi). 9

1 =1

-
Il

The prediction linear function in (3) can be written in terms

of {a} and {S}:

=

= (o

i=1

= Bi) {wi} {}" +b. (10)

Maximization of the dual objective function in Equation (9)
depends on the input vectors only through inner products of
the form {z;}{xz;}". Similarly, the final prediction in Equa-
tion (10) also depends on the input data only through inner
products {z;}{x}T. To empower SVR to handle nonlinearity,
a natural idea is to map the input vectors {z;} to a high-
dimensional feature space through a nonlinear mapping, de-
noted as ®({z;}), and then feed these mapped vectors ®({x;})
into the linear model in Equation (3). This consequently
changes the inner product terms in Equations (9) and (10)
as:

{z D', Vi,j
({zh)', Vi

{zif{z;}" = @ ({zi}) @
{zi{z}" = @ ({a:}) @

(1)
12)

Due to the alluded sole dependency of Equations (9) and (10)
on inner products, the kernel trick in SVR works by directly
defining an explicit kernel function K such that

K ({z}.{a'}) = ®x ({2}) @ ({'}))" ¥ {a}, {o'}

for a certain implicit nonlinear feature mapping ® i. Applying
the kernel trick, the dual objective function in Equation (9)
becomes

L NN
522(%—@‘)(%‘_@)

13)

K ({zi}, {z;})

=1 j=1
—sZ ai +) +Zyz a;—Bi) (14)
and the prediction model in Equation (3) becomes
N
y=) (0= B) K ({x:}, {z}) +b (15)
i=1

The kernel trick avoids explicit calculation of the feature
mapping and works by direct mapping to inner products.
This often results in computational saving and allows im-
plicit mapping into very high- or even infinite-dimensional
spaces [17]. The resulting problem is convex and can be solved
up to considerably large scales with specialized solvers; see,
e.g., [18].

We study three kernels in this paper, namely, linear, poly-
nomial, and Gaussian kernels. The linear kernel mapping is
simply the identity mapping. An inhomogeneous polynomial
kernel of degree d can be written as

- d
K ({oi} fs)) = (1+ {2} {a})
A Gaussian kernel is in the following form
K (o} o) = o (112 mHE) - an)

where o determines the bandwidth of the kernel that is tunable.
The Gaussian kernel induces an implicit mapping that maps
the input vectors into an infinite-dimensional space.

(16)

C. DNN Regression

As shown in Fig. 4(a), a feedforward neural network con-
sists of many connected nodes in multiple layers. The number
of nodes belonging to individual layers can be lumped into a
vector {L} = (Li“7 Lt,...,L" ... L", L"“‘) where L™, L",
L°" denote the number of nodes in the input layer, the h"
hidden layer, and the output layer, respectively. The input to
the A" hidden layer can be found through

{"}={""1 W],
where the L"~' x L" matrix [W"] contains the weights

mapping output of the (h — 1)™ layer to input of the 2™ layer.
The output vector {z"} of the A" hidden layer is obtained as

("} = fo (L") + {(0")), (19)

where f, is a predefined scalar-to-scalar function that acts
element-wise on the vector {z"}. Such f, is called the

(18)

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

Inputs Outputs

8 O
5 O

OO0 OO
OO OO0

Input Layer Hidden Layers Output Layer
()
h
h
Wh,j
h
U)2 ’j
h
wB’j
® o
e WL
L]
(b)

Fig. 4: (a) A feedforward neural network typically consists of
one input layer, several hidden layers, and one output layer;
(b) a node connects the (h — 1) layer to the A" layer. The
w’s and b are the weights, and f, is the activation function.

activation function. The output from the final layer, i.e., {2°"},
is the prediction {g}. It is possible to return a vector directly;
in this paper, for simplicity, we focus on returning a scalar
value, i.e., when the output layer only consists of a single
node.

The forms of nonlinear activation function considered in
this work include the rectified linear unit or ReLU [19]

fa(z) = max {0, 2}, (20)
the hyperbolic tangent
e? —e %

a - 5 21
fole) = S @n

and the sigmoid function

1

()= ——. 22
fol?) = 1 @)

Based on the input vector {x;}, the described feedforward
mechanism predicts the eye height or width {g; }, which differs
from the true {y;} by

{ei} = {vi} —{w:}- (23)

To make {7;} a good approximation of {y;} uniformly over
the training examples, one minimizes the cost function

1 N
E=; ;{ei}{ei}T. (24)

® Training Set

) Linear Regression
“,, N |- DNN Regression
\ SVR

2251

210 A

195

Eye Height (mV)

180

165 u

Pre-Emphasis

Fig. 5: Comparison of the three different regression methods
in handling the nonlinearity imposed by the transmitter model.

The weights stored in matrices [W"] and vectors {b"} are
the optimization variables. To find a local minimum of the
cost function, the stochastic gradient descent (SGD) method
is used, i.e.,

[Wh] = [Wh} — ’yﬁ[Wh]’{bh}E, Vh=1,...,n,& 011(‘525)

where %[W}LL{bh}E is a stochastic approximation to the true
gradient to Vyn) pny F, and 7 is called the learning rate, or
the step size parameter. The stochastic gradients §[Wh]7{bh}E
are computed efficiently by the back-propagation method.

III. NUMERICAL EXAMPLES

In this section, we first evaluate the three regression methods
in terms of their capability of handling the nonlinearities
present in the high-speed channels. We then focus on SVR
and DNN regression and investigate their performances in
eye height and width prediction. As both SVR and DNN
regression have many tunable components and parameters, we
also empirically study the impact of kernel selection on SVR,
and likewise, activation function and optimization methods
on DNN regression. Representation and quality of data are
the key determining factors on the effectiveness of machine
learning methods for practical problems [20]. Our experiments
demonstrate that data preprocessing affects the convergence
speeds of numerical optimization methods on both SVR and
DNN regression—when maximum number of iterations is
enforced, this translates into different prediction accuracies
at the last iteration. Our implementation of SVR is based
on the scikit-learn [21] package, and DNN regression on the
TensorFlow [22] package.

A. Comparison on Capability of Handling Nonlinearities

To generate the training set, we sweep the pre-emphasis
level on the transmitter side while fixing the remaining input
parameters and record the eye height. This simplifies the mul-
tivariate regression problem into a univariate one. The training

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

240

= Training Set
25 /,-'4. ---=- Gaussian
1 =N Polynomial
— \ Sigmoid
> i
g1210
£
1)
-5 195
==
o
>
=

180

165

10
Pre-Emphasis

Fig. 6: Performance of SVR in eye-height prediction with
different kernels. The polynomial kernel has degree three.

set thus contains only 10 examples, corresponding to all ad-
missible pre-emphasis levels (Fig. 5). Linear regression cannot
handle nonlinearities, which is evident from its formulation
and the demonstration in Fig. 5—the predicted eye heights
by linear regression deviate significantly from the truth. Both
SVR and DNN regression achieve excellent accuracy in eye-
height prediction in the presence of nonlinearities. The DNN
regression uses two hidden layers, each with 100 nodes. SVR
with different kernels can handle nonlinearities of different
forms and scales. As shown in Fig. 6, only Gaussian-kernel
SVR successfully handles the nonlinearity in this numerical
example. Therefore, it is critical to select an appropriate kernel
in order for SVR to accurately model the high-speed channel.

B. Performance of the DNN Regression

Relative Error (%)

100

200 300
Examples

Fig. 7: Relative errors of the predicted eye heights from the
DNN regression on the test set.

In this section, we consider all the input parameters tab-
ulated in Fig. 1(b) and investigate the performance of DNN
regression for the complete multivariate regression.

A DNN is first trained to predict the eye height. The
training, validation, and test sets contain 717, 48, and 476

examples, respectively. The DNN has three hidden layers of
100, 300, and 200 nodes, respectively. The learning rate is
chosen as 0.01 and the batch size is 25. The maximum number
of iterations is set to 4000. The eye height in the data set
varies from 148 to 253 mV. Table I shows the prediction
performance measured by the root-mean-square error (RMSE)
and the maximum relative error. The RMSE is defined as

1

RMSE = 4/ —=RSS
N 3

(26)
where RSS is the least-squares objective function de-
fined in Equation (2) and N is the number of exam-
ples. Several variants of the SGD method are available;
they often have different convergence speeds. With our
pre-specified maximum number of iterations, the differ-
ent convergence speeds may translate into different pre-
diction accuracies. We test three variants: the plain SGD
(GradientDescentOptimizer in TensorFlow), the mo-
mentum variant (MomentumOptimizer in TensorFlow),
and the RMSProp variant (RMSPropOptimizer in Tensor-
Flow) [23]. The RMSE on the training set with plain SGD
is 3.1 mV and 3.4 mV on the test set. When the momentum
variant is used, the RMSE on the training set is reduced to
1.9 mV and to 2.7 mV on the test set. Figure 7 depicts the
relative errors of the predicted eye heights on the test set, and
the majority are below 3%.

Another DNN is trained to predict the eye width. The eye
width is measured in unit intervals (UI)—one UI is defined
as one data bit-width. The training, validation, and test sets
contain 509, 35, and 203 examples, respectively. This DNN
has seven hidden layers of 10, 20, 20, 30, 20, 20, and 10
nodes, respectively. The batch size is changed to 15. The eye
width varies from 0.21 to 0.37 UI in the data set. From Table
II, the RMSE with the momentum method is 0.006 UI on the
training set and 0.008 UI on the test set, and the maximum
relative errors in both training and test sets are less than 10%.

204 \
\
\
Voo e GradientDescent
N 151 Y —— Momentum
£ ", —---RMSProp
g 10 ",'
@ \
54
0 T T T
0 1000 2000 3000 4000
Steps

Fig. 8: Evolution of the RMSE of the predicted eye height
with respect to the iteration index with the DNN regression.
The three variants of SGD used in this paper are compared.

Figure 8 compares the convergence behaviors of the three
variants of SGD. The network architecture and common

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

TABLE I: Accuracy of predicted eye heights from the DNN regression.

Gradient Descent | Momentum | RMSProp
o RMSE (mV) 3.1 1.9 2.6
On Training Set
Maximum Relative Error (%) 6.2 4.1 5.2
RMSE (mV) 34 2.7 3.1
On Test Set
Maximum Relative Error (%) 5.9 6.1 6.3

TABLE II: Accuracy of predicted eye widths from the DNN regression. A unit interval (UI) is defined as one data bit-width,

regardless of data rate. Eye width is measured in the UI.

Gradient Descent | Momentum | RMSProp
o RMSE (UI) 0.006 0.006 0.008
On Training Set
Maximum Relative Error (%) 7.9 8.1 8.7
RMSE (UI) 0.008 0.008 0.01
On Test Set
Maximum Relative Error (%) 10.6 9.3 9.5

TABLE III: Accuracy of predicted eye heights from the SVR. Three different kernels are compared and the polynomial kernel

has degree three. The results shown here are after standardization is applied to the data set.

Gaussian | Polynomial | Linear
o RMSE (mV) 2.5 17.2 17.9
On Training Set
Maximum Relative Error (%) 6.2 20.7 19.3
RMSE (mV) 5.7 16.7 19.3
On Test Set
Maximum Relative Error (%) 10.2 19.5 17.9

TABLE IV: Accuracy of predicted eye widths from the SVR with three different kernels. A unit interval (UI) is defined as
one data bit-width, regardless of data rate. Eye width is measured in the UI. The results shown here are after standardization

is applied to the data set.

Gaussian | Polynomial | Linear
L RMSE (UI) 0.008 0.02 0.029
On Training Set
Maximum Relative Error (%) 12.8 41.3 329
RMSE (UI) 0.04 0.038 0.081
On Test Set
Maximum Relative Error (%) 234 22.8 333

optimization parameters are tuned based on the hyperbolic
tangent activation and plain SGD. For the comparison, these
parameters are fixed and only the optimization methods are
replaced each time. The momentum variant works by accumu-
lating gradient information across iterations, and the RMSRrop
variant works by modifying the gradient and adaptively tuning
the learning rates. Our experiment suggests these heuristics
indeed lead to faster convergence.

Data preprocessing also influences the convergence speed.
In the above experiments, individual input parameters were
“standardized” to have zero mean and unit variance:

T—H

LTnew = >

27)

where 11 and o are the empirical mean and standard deviation
of the individual parameters, respectively. We compare this
type of preprocessing with data normalization

T — Tmin

Tnew = (amax - amin) + Qmin, (28)

Tmax — Lmin
which rescales the individual parameters into the interval
[Qmins Omax]- Here Zmin and xpn,x denote the minimum and
maximum values of the original data, respectively. Figure 9
compares the impacts of data standardization, data normaliza-
tion, and primitive input on the convergence speed. Both data
standardization and normalization significantly speed up the
convergence.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

25
\
' \\ — = no preprocessing
201 \ standardization
~ ---- min max scaler
~
S 154
g
7
s 104
-4
54
0 T T T
0 1000 2000 3000 4000
Steps

Fig. 9: Evolution of the RMSE of the predicted eye height
with respect to the iteration index with the DNN regression.
Three data preprocessing methods are compared.

30
i \ — — sigmoid
3 \ — - —tanh
\
----eclu
N
= 20 relu
S
g
= 157
2]
=
& 10
5 <
0 T T T
0 1000 2000 3000 4000
Steps

Fig. 10: Evolution of the RMSE of the predicted eye height
with respect to the iteration index with the DNN regression.
Four different activation functions are compared.

Finally, we study the impact of different activation func-
tions. Again, the network architecture and optimization pa-
rameters are tuned based on the hyperbolic tangent activation
and plain SGD, with the activation functions being replaced
each time. Figure 10 shows that the hyperbolic tangent and
ReLU enjoy faster convergence than the other two activation
functions.

C. Performance of the SVR

We adopt the same training, validation, and test sets in the
previous section to analyze the prediction accuracy of SVR.
The maximum number of iterations is set to 4000. As shown in
Table III, the SVR with Gaussian kernel achieves a maximum
relative error of 10.2% on the test set in eye-height prediction,
which is higher than that of the DNN regression. The instance-
wise relative errors of the predicted eye heights with the SVR
is depicted in Fig. 11. The relative errors for the majority of
examples in the test set are below 6%. Similarly, for eye-width
prediction as shown in Table IV, the Gaussian-kernel SVR has

12

[©
1 1

Relative Error (%)

w
1

300 400

200
Examples

Fig. 11: Relative errors of the predicted eye heights from
Gaussian-kernel SVR on the test set.

304 0 [min max scaler
\ standadization
25 P /i |- - - no preprocessing

RMSE (mV)

T T T T T
0 100 200 300 400 500

Steps

Fig. 12: Evolution of the RMSE of the predicted eye height
with respect to the iteration index. Convergence speed of the
Gaussian-kernel SVR is not sensitive to data standardization.

a maximum relative error of 23.4%, in contrast to the 10.6%
by the DNN regression.

As for the impact of different kernels, the polynomial-kernel
SVR does not make satisfactory predictions on eye height and
the maximum relative error is as high as 19.5% on test set.
The linear SVR cannot handle the nonlinearities imposed by
the transmitter and receiver model, which is also shown in
Tables III and IV.

We also study the sensitivity of the convergence speed on
SVR with respect to data preprocessing. We focus on the
Gaussian-kernel SVR due to its superior prediction accuracy
as compared to other kernel choices. Figure 12 depicts the
evolution of the RMSE of the predicted eye height with respect
to the iteration index. The Gaussian-kernel SVR appears to
be insensitive to data standardization in our experiment, as
the evolution curves with and without the data standardization
roughly align with each other. However, data normalization
substantially slows down the convergence—in fact, empirically
the Gaussian-kernel SVR seems to take forever to converge
after the normalization.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

IV. CONCLUSION AND DISCUSSION

In this work, we propose using machine learning methods to
predict eye-diagram metrics of high-speed channels for signal
integrity analysis. Regression models are learned based on the
large amount of prior simulation data. Once the learning is
completed, the learned models can be used to predict the eye
height and the eye width in future designs. This learning-
based approach requires no substantial domain knowledge and
meanwhile saves complex and expensive circuit simulations.
Through numerical examples, we studied three regression
methods including linear, support vector, and DNN regressions
on their capability of handling nonlinearities in the high-
speed channels. We also studied the impacts of various tunable
parameters including kernels in SVR, activation functions
and optimization methods in DNN regression, and two data
preprocessing schemes on the convergence speed at training
and the prediction accuracy at testing.

Machine learning methods open an array of opportunities
for signal integrity analysis. As an immediate extension, the
regression problem considered in this paper can be directly
formed as a classification problem, because eye masks are
readily available in many standard high-speed interfaces and
hence the pass or fail labels are known. Another possibility
is to extend the current learning framework to analyze the
four-level pulse amplitude modulation (PAM-4) signaling,
which is the leading contender for implementing high-speed
channels with 56 Gbps throughput and higher. In practice,
simulation data are gathered over time as the design cycle
progresses. Therefore, it may be more appropriate to adopt an
online learning setting in which the channel models are being
gradually improved as new data become available. Finally,
provided that adequate design data could be gathered, it is
plausible to consider an “inverse design” setting, in which the
target channel performance is specified and possible design
parameter combinations are suggested by learning models.

REFERENCES

[1] S. H. Hall and H. L. Heck, Advanced signal integrity for high-speed
digital designs. John Wiley & Sons, 2011.

[2] J.-M. Jin, The finite element method in electromagnetics.
& Sons, 2015.

[3] Y. Li and J.-M. Jin, “A vector dual-primal finite element tearing and
interconnecting method for solving 3-D large-scale electromagnetic
problems,” IEEE Transactions on Antennas and Propagation, vol. 54,
no. 10, pp. 3000-3009, 2006.

[4] S. V. Polstyanko, R. Dyczij-Edlinger, and J.-F. Lee, “Fast frequency
sweep technique for the efficient analysis of dielectric waveguides,”
IEEE transactions on microwave theory and techniques, vol. 45, no. 7,
pp. 1118-1126, 1997.

[5] S.-H. Lee, T.-Y. Huang, and R.-B. Wu, “Fast waveguide eigenanalysis
by wide-band finite-element model-order reduction,” IEEE transactions
on microwave theory and techniques, vol. 53, no. 8, pp. 2552-2558,
2005.

[6] W.-D. Guo, J.-H. Lin, C.-M. Lin, T.-W. Huang, and R.-B. Wu, “Fast
methodology for determining eye diagram characteristics of lossy trans-
mission lines,” IEEE Transactions on Advanced Packaging, vol. 32,
no. 1, pp. 175-183, 2009.

[71 B. K. Casper, M. Haycock, and R. Mooney, “An accurate and efficient
analysis method for multi-gb/s chip-to-chip signaling schemes,” in VLSI
Circuits Digest of Technical Papers, 2002. Symposium on. 1EEE, 2002,
pp. 54-57.

[8] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

John Wiley

[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in neural information
processing systems, 1997, pp. 155-161.

J. Schmidhuber, “Deep learning in neural networks: an overview,’
Neural networks, vol. 61, pp. 85-117, 2015.

A.J. Smola and B. Schélkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199-222, 2004.

V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

H. Borchani, G. Varando, C. Bielza, and P. Larrafiaga, “A survey on
multi-output regression,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 5, no. 5, pp. 216-233, 2015.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and
when can deep-but not shallow-networks avoid the curse of dimension-
ality: A review,” International Journal of Automation and Computing,
pp. 1-17, 2017.

S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.
A. J. Smola and B. Scholkopf, Learning with kernels. GMD-

Forschungszentrum Informationstechnik, 1998.

R.-E. Fan, P-H. Chen, and C.-J. Lin, “Working set selection using
second order information for training support vector machines,” Journal
of machine learning research, vol. 6, no. Dec, pp. 1889-1918, 2005.
K. Jarrett, K. Kavukcuoglu, Y. LeCun et al., “What is the best multi-
stage architecture for object recognition?” in Computer Vision, 2009
IEEE 12th International Conference on. 1EEE, 2009, pp. 2146-2153.
S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing for
supervised leaning,” International Journal of Computer Science, vol. 1,
no. 2, pp. 111-117, 2006.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

