3D Ordinal Constraint in Spatial Configuration
for Robust Scene Recognition

Ching Lik Teo
DSO National Laboratories
tchingli@dso.org.sg

Abstract

This paper proposes a scene recognition Sstrategy
that integrates the appearance based local SURF fea-
tures and the geometry based 3D ordinal constraint.
Firstly, we show that spatial ordinal ranks of 3D land-
marks are well correlated across large camera view-
point and view direction changes and thus serve as a
powerful tool for scene recognition. Secondly, ordinal
depth information is acquired in a simple and robust
manner when the camera undergoes a bio-mimic ‘Turn-
back-and-Look’(TBL) motion. Thirdly, a scene recogni-
tion strategy is proposed by combining local SURF fea-
ture matches and global 3D rank correlation coefficient
into the scene recognition decision process. The perfor-
mance is validated and evaluated over four indoor and
outdoor databases.

1 Introduction

The problem of scene recognition is defined as the
ability to recognize matches between an input query
(test) image and reference images in an image database.
It has important applications in robot visual navigation
[9] and image retrieval [10].

A successful scene recognition strategy should pos-
sess two crucial characteristics. Firstly, the strategy
should be robust to various types of image distortions
due to changes of viewpoint, view direction, illumina-
tion and even moderate change of the scene environ-
ment itself. Secondly, it should be able to reliably dis-
criminate dissimilar scenes. Unfortunately, these two
characteristics usually conflict each other — to achieve
better robustness, one has to sacrifice the algorithm’s
discrimination power and vice versa. Another impor-
tant issue is the generality of the recognition algorithm.
A general scene recognition strategy should be able to
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deal with both indoor and outdoor environments.

To deal with the dilemma, many researchers have
been combining the appearance based local feature in-
formation [8] [1] together with the geometry based
semi-local or global spatial information [2] [7]. Most
of the works are limited to 2D spatial configurations,
which are unreliable when the perspective effect is obvi-
ous. On the other hand, epipolar constraint and homog-
raphy seem to be the few 3D spatial constraints used
in feature point based scene recognition [4]. However,
these 3D constraints are computationally expensive and
not robust, especially when large number of mismatches
exist.

In this paper, we propose a scene recognition strat-
egy that integrates the appearance based local SURF
features [1] and the geometry based global 3D ordinal
constraint. In Sec.2, the 3D ordinal constraint based on
qualitative spatial information of the scene is proposed.
In Sec.3, ordinal depth is acquired in a simple and ro-
bust manner when the camera undergoes a bio-mimic
‘Turn-back-and-Look’ (TBL) motion. Sec.4 presents
the details of the scene recognition strategy. In Sec.5,
the performance is validated on four indoor and outdoor
databases. Results show that 3D ordinal constraint im-
proves the scene recognition performance compared to
a simple matching based method and a matching plus
epipolar constraint method.

2 3D Ordinal Constraint in Spatial Con-
figuration

In this section, we propose the 3D ordinal constraint
which is based on 3D qualitative spatial information and
show that it can serve as a powerful tool in scene recog-
nition tasks.



Figure 1. Landmark ranks (in x dimension) under
slight viewpoint change.

2.1 Landmark Ranks and Rank Correlation
Coefficient (RCC)

For simplicity, we use an intuitive way to illustrate
the idea of landmark ranks. In fig. 1, two images of a
scene taken from different viewpoints are shown. The
image on the right is taken when the camera has under-
gone a slight viewpoint change to the right. The num-
bers show the ranks of the landmarks according to the x
coordinate of the landmarks’ position in the image. The
metric measurement of the landmarks’ position is con-
verted to an ordinal scale [11]. Hence only the ranks of
the landmarks’ positions are of concern. The arrows in
Fig.1 show clearly how the positions of the four land-
marks have changed as the camera shifts to the right.
Although the landmarks’ absolute positions change in
the x direction, their ranks remain invariant.

In practice, however, due to viewpoint changes and
mismatches, ranks of landmark matches between dif-
ferent views of a scene may suffer from some perturba-
tions. Nonetheless, the landmark ranks calculated from
the reference image remains correlated to some degree
to the landmark ranks calculated from a positive test
image. This correlation imposes an ordinal constraint
on the spatial configuration of the landmarks. In sta-
tistics, correlation between different ranks is measured
by the rank correlation coefficient (RCC) [6], which is
a variable within [—1,1]. 1 (or —1) indicates perfect
agreement(or disagreement) between the two ranks. 0
indicates complete independence. Many methods have
been proposed to calculate RCC, here we use the two
most widely used - Spearman’s p and Kendall’s 7 [6].

2.2 3D Rank Correlation Coefficient (3D
RCCO)

In this paper, we measure the landmark ranks and
RCC in three dimensions: two image dimensions x and
1y, and the depth dimension Z. We denote X,Y, Z as
axis in the camera coordinate system. It is intuitive
and can be mathematically proven that perturbations in
the landmark ranks on different dimensions (z,y, Z)
are likely to occur under different types of viewpoint
change and in different types of scene configurations.
We summarize the characteristics as follows:

* Ranks in z (or y) dimension are likely to be per-
turbed by camera translation. The sensitivity de-

pends on the in-depthness of the scene: Dx = ﬁ—)z(

(Dy = %)(see Fig. 2). The bigger the Dx
(Dy), the higher the sensitivity. The ranks are
however invariant to pure camera rotation around
the camera X or Y axis.

* Ranks in Z dimension are likely to be perturbed
by camera rotation around the X or Y axis. The
bigger the Dx and Dy, the lower the sensitivity.
In this case, the ranks are invariant to pure camera
translation.

* Camera cyclotorsion (rotation around Z axis) may
perturb ranks in x and y dimension but does not
perturb ranks in Z dimension.

Therefore, RCC in different dimensions compensates
one another. One way to obtain a robust tool for recog-
nition for scenes of various in-depthness under all kinds
of viewpoint changes is to combine the RCC in three
dimensions. In this way, a 3D Ordinal Constraint is
imposed on the landmarks. Take Spearman’s p for ex-
ample (similar for Kendall’s 7), we define the 3D Rank
Correlation Coefficeint (3D RCC) as:

(wz+wy+wy, = 1)
(1)
The weights wz, w,,w, can be chosen particularly if
some prior knowledge of the reference database and the
camera view change are known. If not, we can simply
average the three (P35 = 3(pz + pu + py)). If the or-
dinal depth information is not available, wz can be set
to zero, and the 3D RCC then degenerates to 2D.
Figure 2 shows 100 3D random points observed un-
der typical viewpoint changes in the scene recognition
tasks. Figure 3 shows (p3p) between the reference view
Cy and the test views C;,i¢ = 1,2,...,9 in scenes
of various in-depthness. The black line shows the 3D
RCC between two different scenes under random view-
points, which is zero. This shows that 3D RCC can dis-
criminate between dissimilar scenes. Furthermore, the

P3D = WzPz +WgPg+WyPy



Figure 2. Simulation of 100 3D random points
scene under several camera view changes.

invariance of 3D RCC to different scene in-depthness
highlights the robustness of the measurement to differ-
ent scene configurations, making it a powerful tool for
scene recognition.

3 Robust Ordinal Depth Acquisition -
TBL Motion

Since ranks in the depth dimension are used to com-
pute pz in 3D RCC, acquiring ordinal depth in a sim-
ple and robust way is a critical issue. In this paper, we
recover ordinal depth from the bio-mimic Turn-Back-
and-Look (TBL) motion using standard structure from
motion(SFM) technique.

In the face of errors in SFM, Cheong and Xiang [3]
showed that there exists generic motion types that ren-
der depth recovery more robust and reliable. For lateral
movement, although Euclidean reconstruction is diffi-
cult, the distortion caused by errors in the motion esti-
mates preserves the depth relief, which means that ordi-
nal depth is still preserved. The ecological relevance of
lateral motion is underlied by the prevalence of lateral
motion used by different animals in nature to appreci-
ate distances [12]. In the case of bees and wasps, this
type of motion is known as Turn-Back-and-Look (TBL)
motion. The TBL motion consists of a series of arcs
centered about an object of interest, with the direction
of translation perpendicular to the line of sight of the
insect. TBL is believed to be important for the bees to
recognize the scenes on their return trip [10].

We exploit camera TBL motion to recover the or-
dinal depth information required for scene recognition
purpose. This strategy can also be readily extended to
stereo camera systems where the two cameras or eyes
are frontally placed. To get reliable ordinal depth infor-
mation in this work, all reference and test images in the
database consist of two frames taken under camera TBL

3D RCC as viewpoint and view direction changes (average of 100 trials)
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Figure 3. 3D RCC scores across the camera views
for different in-depthness of the scene (average of
100 random trials).

motion. Depth (Zr 1) of each feature point is then re-
covered from the optical flow computed from the two
frames. The recovered depth may be inaccurate met-
rically, however, the ordinal scale depth information is
trustworthy and can be used to compute p in 3D RCC.

4 Scene Recognition Strategy

Our scene recognition strategy(SRS) is a SURF
based method combining 3D geometry verification us-
ing 3D RCC.

4.1 Constructing the Scene Matrix

The first step of our SRS is to extract and encode
useful regions in the scene for reliable recognition in
the later stages. We use a modified version of a com-
putational model of human visual saliency [5]. Various
image morphological operations are then applied on the
saliency map to extract the salient regions which are
then encoded using SURF [1] to form ‘salient-SURF’
features (see fig. 4). For improved robustness against
illumination changes, the SURF features are detected
over the HSV color space. The final N salient-SURF
features are then saved into a compact matrix known as
the Scene Matrix, s, (c) for the ¢ color space

sm(c) = [locsnxs desnxes ZTBLI w71 (2)

where ¢ € {h, s, g} represents the H, S, V color com-
ponents. locs is a 5D location vector of one SURF fea-
ture while des encodes its corresponding 65D SURF
descriptor [1]. Zrpy is the depth associated with this
feature, obtained through camera TBL motion.
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Figure 4. From the original RGB image, we extract the skyline and compute the saliency map. The salient ROIs are
then extracted and encoded using SURF features augmented with ordinal depth to form the salient-SURF features.

4.2 Measuring Scene Similarity

Given the reference and the test scenes encoded by
their respective scene matrices (s”,, s’ ), where s,, rep-
resents the scene matrices over the three color spaces,
we use the correspondence matching algorithm for
SIFT descriptors [8] for efficient matching of the SURF
features. To measure the similarity of the reference and
the test, we define a similarity measure G, known as

the Global Scene Correlation Coefficient:
Ge(spm, Sin) = (Nmatch/Ntot) X R. 3)

where N,,,qtcrn, and Ny, are the number of matches and
the total number of features in the test image respec-
tively. R = @ is the spatial 3D rank correlation
of the matches between the reference and the test im-
ages. Equation (3) effectively weighs the 3D RCC by
% because a large 3D RCC may occur between
2 dissimilar scenes when N, 4tcn, 1S small. For ideal
cases, G, is close to 1 for positive scenes and close to
0 for negative scenes. In practice, however, the effects
of viewpoint changes, mismatches and occlusions often
degrade G..

4.3 Recognition Decision Module

A database of N,.s reference scenes will require
Nycy pairwise comparisons with the input test scene
each of which will use (3) to compute a measure of
scene similarity. The results are summarized into a
match statistic matrix m:

ms = [Nmatch/Ntot R GC}Nr‘ef %3 (4)

The candidate match Gz, is the reference scene
that yields the largest G, in m,. The decision process
is as follows:
if Gz < tg, reject the test image;
elseif G/ Gandmar < ta, reject the test image;

Table 1. The four databases. (Nycf, Npos, Nneg)
refers to the number of reference scenes, positive
test scenes, negative test scenes respectively.

Database || (Nref, Npos; NVneg) | Type

IND (18,25,21) Indoor

UBIN (20,63, 69) Outdoor coastal
SBWR (15,15,16) Outdoor enclosed
NS (20,41, 52) Outdoor varied

Table 2. Recognition results of the Proposed
SRS(SURF + 3D Ordinal Constraint) (%)

Database || (tq,%q) Poce | Prej Poyerall

IND (1.1,0.03) | 84.00 | 90.48 | 87.24
UBIN (1.3,0.02) | 84.13 | 91.30 | 87.72
SBWR (1.2,0.02) | 93.30 | 100.00 | 96.65
NS (1.2,0.01) | 92.68 | 92.31 | 92.49

else accept the test image.
where t4 and t, are preset thresholds; Goy,dmaq 1S the
2nd largest G in my.

S Experimental Results

In order to validate the performance of our SRS, four
challenging indoor and outdoor databases, with signif-
icant image distortions between the test and reference
scenes are created (see table 1 and fig. 5).

We evaluate the performance of our proposed SRS
by computing the recognition accuracy in terms of pos-
itive acceptance P,.. (%), and negative rejection P,
(%). Averaging out the results yields P,ycrqi1 (%), the
overall recognition accuracy. The results are summa-
rized in table 2 (the thresholds shown yield the best
overall performance over a range of threshold values).

We compare the results with that of simple



Figure 5. Various challenging test and reference scenes for the four databases. IND: ambiguous scenes(t) and
viewpoint changes(b). UBIN: clear vs hazy overcast skies(t) and shadows vs leaves swept up(b). SBWR: numerous
occlusions due to dense vegetation. NS: non-uniform illumination(t) and changes in scene content due to rain and tree
fall(b). All the test scenes shown here are successfully recognized.((t)op,(b)ottom).

Table 3. Recognition results of the Simple
SRS(SURF Only) (%)

Database (taa td) Pacc Prej Poverall
IND (1.2,0.03) | 76.00 | 71.43 | 73.71
UBIN (1.2,0.01) | 69.84 | 68.12 | 68.98
SBWR (1.2,0.02) | 80.00 | 81.25 | 80.63
NS (1.5,0.02) | 70.73 | 98.08 | 84.40

SRS(table 3). Simple SRS uses only the percentage
matches % as a similarity measure. One can see
that the recoognition accuracy of the proposed SRS is
higher and more consistent over the four databases than
that of the simple SRS. 3D ordinal constraint thus con-
tributes positively in the recognition accuracy.

For further evaluation, we compare the results with
that of epipolar SRS(table 4), which uses SURF match-
ing plus RANSAC epipolar constraint to eliminate mis-
matches. It can be seen that the proposed SRS outper-
forms the epipolar SRS significantly. In addition, the
proposed SRS is computationally more efficient than
the iterative RANSAC based epipolar SRS. Therefore,
3D ordinal constraint is more effective and efficient
than the commonly used epipolar constraint in the scene
recognition task.
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