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Abstract

The problem of recognizing actions in realistic videos
is challenging yet absorbing owing to its great potentials
in many practical applications. Most previous research is
limited due to the use of simplified action databases un-
der controlled environments or focus on excessively local-
ized features without sufficiently encapsulating the spatio-
temporal context. In this paper, we propose to model the
spatio-temporal context information in a hierarchical way,
where three levels of context are exploited in ascending or-
der of abstraction: 1) point-level context (SIFT average de-
scriptor), 2) intra-trajectory context (trajectory transition
descriptor), and 3) inter-trajectory context (trajectory prox-
imity descriptor). To obtain efficient and compact repre-
sentations for the latter two levels, we encode the spatio-
temporal context information into the transition matrix of
a Markov process, and then extract its stationary distribu-
tion as the final context descriptor. Building on the multi-
channel nonlinear SVMs, we validate this proposed hierar-
chical framework on the realistic action (HOHA) and event
(LSCOM) recognition databases, and achieve 27% and
66% relative performance improvements over the state-of-
the-art results, respectively. We further propose to employ
the Multiple Kernel Learning (MKL) technique to prune the
kernels towards speedup in algorithm evaluation.

1. Introduction

Recently, recognizing actions in unconstrained videos
has been an active research topic in computer vision. There
exist two sources of impetus to this topic: 1) The continual
advances in high-level vision research, e.g. object detection
and recognition. These problems share many similarities as
well as difficulties with action recognition. Hence success-
ful techniques of solving high-level vision problems can of-
ten be adapted to action recognition; and 2) The great po-
tentials in practical applications, e.g. realtime video surveil-
lance and security monitoring, automatic video indexing,

Figure 1. Schematic diagram on hierarchical spatio-temporal
context modeling. The three levels of spatio-temporal context re-
siding with SIFT-based trajectories are 1) the point-level context
(SIFT average descriptor), 2) intra-trajectory context (trajectory
transition descriptor), and 3) inter-trajectory context (trajectory
proximity descriptor). They can be fed into the multiple-kernel
learning module for kernel pruning to speed up subsequent pro-
cessing. (Refer to the electronic version for best view)

and human-computer interfaces.
The problem of recognizing actions in videos is chal-

lenging, and all difficulties associated with object detection
and recognition task, such as large intra-class variations,
partial occlusions, low resolution and cluttered background,
may also be encountered in action recognition problem.
Therefore the action recognition algorithms [22, 23], which
aimed to achieve the robustness to viewpoint change based
on geometric reconstruction, are doomed due to their re-
liance on exact knowledge of the object contours or mul-
tiple view geometries, which are prone to errors in uncon-
strained videos. In contrast, the bag of words related algo-
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rithms [6, 12, 20] handled the above difficulties well and
achieved promising results on some action video databases.
However, this line of research tends to focus on design-
ing sophisticated learning models, but is limited on the use
and effective modeling of action-related features, in partic-
ular spatio-temporal context of the visual features. Most
previous algorithms for action recognition were evaluated
on video databases under controlled settings, such as the
KTH [14] and figure skating [21] databases with static back-
ground or dominant single-body motion. These databases
are far less complicated than the realistic movie or news
video actions, e.g. the recently released HOHA [6] and
LSCOM [20] databases.

The term context is widely used in both computer vision
and multimedia areas, but hitherto has been loosely defined
due to its task-specific nature (see [11, 19]). For the action
recognition problem defined in a 3D spatio-temporal space,
context refers to any spatio-temporal information that en-
capsulates the spatio-temporal layout and transition, rel-
ative position, global and semi-local statistics, etc. of the
low level visual features, e.g. gray-levels, gradients, and
colors. It is evident that context information is very impor-
tant for action recognition in unconstrained videos owing to
the capability to express the dynamic and structural nature
of motions.

In this work, we model the spatio-temporal context infor-
mation encoded in unconstrained videos based on the SIFT-
based [10] trajectory, in a hierarchy of three abstraction lev-
els (see Fig. 1): at the fine level, localized statistics of spatial
gradients (SIFT average description) along the trajectory;
at the intermediate level, the transition and dynamics of
the trajectory in spatio-temporal domain; and at the coarse
level, the spatio-temporal co-occurrence and distribution of
the trajectories. By encoding the latter two levels of con-
text information into the transition matrix of Markov pro-
cess, we can derive compact and efficient representations of
context based on their stationary distributions. Employing
the multi-channel nonlinear SVMs as in [6] to fuse feature
channels, we validate our proposed framework over two re-
alistic action databases used in [6, 20], and demonstrate
its superiority over the state-of-the-art. To reduce the cost
of greedy search for best combination of channels in multi-
channel SVMs, we propose to apply MKL technique [17]
first to select the candidate channels before performing ex-
haustive search.

2. Related Work
Trajectory-based action recognition has been extensively

studied in the past few years. These proposed algorithms
typically differ on how to encode the dynamics of trajecto-
ries for subsequent processing. By using geometric prop-
erties such as the trajectory speed and location [4, 16],
trajectory curvature [13] and trajectory segments [2], to-

gether with other cues such as local appearance [4, 16],
spatio-temporal saliency and shape structure [5], many ap-
proaches have partially succeeded in modeling trajecto-
ries and capturing the context information. In this work,
our main target is to describe the spatio-temporal context
based on SIFT-trajectory, rather than those less structured
spatially or spatio-temporally salient points. By compari-
son, the trajectory-based context has closer relation to mo-
tions, which are the elements for action recognition. Hence
we propose a hierarchical framework to model the spatio-
temporal context in three levels, namely point-level context,
intra-trajectory context, and inter-trajectory context. The
three level of context provide a hierarchy of multiresolution
information on variation and dynamics of visual patterns in-
side video sequences, and hence offer more discriminative
representation for characterizing different types of actions
in unconstrained videos.

Compared to those approaches that build models on ex-
act knowledge of trajectory such as the speed or even accel-
eration (curvatures) [4, 13, 16], our model is less sensitive
to noise and does not require preprocessing such as smooth-
ing. Different from the synthesized trajectory segments (or
star diagram [2]) method which has collected displacement
vectors together and analyze the distribution pattern, our ap-
proach explicitly accounts for the sequential order of the
trajectory segments by finite-state Markov chain, and max-
imally encapsulates the dynamic nature of the trajectories.

3. Hierarchical Spatio-temporal Context Mod-
eling in Realistic Action Videos

We propose to capture visual motion patterns by extract-
ing the trajectories of the salient points, and then model
the spatio-temporal context information residing with these
trajectories. Given a video sequence V in xyt−space, we
first extract a bunch of trajectories {T1, · · · ,TN} as spatio-
temporal curves, and then form three levels of context rep-
resentations {F1,F2,F3} based on these curves, where F1,
F2, and F3 are designed to describe the point-level, intra-
trajectory level, and inter-trajectory level context, respec-
tively. We start with extracting the trajectories of the spa-
tially salient points.

3.1. SIFT-based Trajectory Extraction

Reliable spatially salient point detection and tracking al-
gorithms are critical for the modeling of motion patterns in
realistic videos. For spatially salient point detection and
representation, we adopt the well established SIFT [10]
technique, the effectiveness of which has been validated
in numerous visual tasks, such as object recognition [9]
and robot navigation [15]. The renowned robustness and
scale-invariance properties of SIFT render it a better choice
as compared to other techniques such as the Harris and



Figure 2. Example trajectories of the SIFT salient points for
six types of actions. Note that different videos may have different
frame dimensions. A pictorial trajectory presented in the figure is
formed by connecting all the spatially salient points on the same
trajectory. (Refer to the electronic version for best view)

Kanade-Lucas-Tomasi (KLT) feature trackers [18]
The trajectory extraction process is based on the pairwise

SIFT matching over consecutive frames. For the frames
{f1, · · · , fk} of a video sequence denoted V with k frames,
we establish all the SIFT point matches between fi and fi+1,
for 1 ≤ i ≤ k− 1. Matches that extend over several frames
then form a motion trajectory of the SIFT salient point. To
mitigate the effect of incorrect matches and hence the cre-
ation of spurious trajectories, we impose the unique-match
constraint and also discard matches that are too far apart,
since most realistic motions cannot be very fast. To be spe-
cific, for any SIFT salient point p in frame i, there can be
maximally one candidate match point p′ in frame i+ 1, and
p′ must be located within aN×N (we setN = 64 in all the
experiments) spatial window around point p. This window-
ing approach ensures that the trajectory may automatically
end when reaching the shot boundaries or with considerable
occlusions. In such situations, our tracking algorithm will
restart to track another batch of trajectories. To further re-
move possible noisy trajectories and reduce the chance of
long trajectories mixing up with successive motions, e.g.
human stand up and walk, we restrict the length L of any
valid trajectory to be Lmin ≤ L ≤ Lmax. In this work, we
set Lmin = 5 and Lmax = 25, which correspond to 0.2 ∼ 1
second in duration. Fig. 2 shows some example trajectories
generated by our proposed tracking method.

3.2. Point-level Context: SIFT Average Descriptor

The importance of spatial context information in action
recognition has been discussed in most previous work, e.g.
the what component described in [20]. It is evident for

scene and object recognition tasks that the spatial context
information encoded in an image frame can provide critical
implication on the semantic category of the occurring ob-
jects [11, 19]. Similarly for action recognition over frame
sequences, this source of information is also very useful in
constraining the action category.

The point-level context information is measured as the
average of all the SIFT features extracted at the salient
points residing on the extracted trajectory. For a motion tra-
jectory of length k, the SIFT average descriptor S is related
to all SIFT descriptors {S1, · · · ,Sk} along this trajectory
by

S =
1
k

k∑
i=1

Si. (1)

The underlying philosophy of the point-level context mod-
eling is two-fold. First, the tracking process ensures that
the local image patches residing on the trajectory are sta-
ble, and thus the resultant SIFT average descriptor offers
a robust representation for certain aspect of visual content
within the video. Second, similar to the silhouette average
used in [8] for human gait recognition, the SIFT average
can also encode partially the temporal context information,

To facilitate efficient representation and processing over
videos, we employ the bag of words model. Specifically,
we construct a visual vocabulary with 1000 words by K-
means algorithm over the sampled SIFT average descriptors
(from the training set). We then assign each SIFT average
descriptor to its closest (in the sense of Euclidean distance)
visual word. The histogram of visual word occurrences over
a spatio-temporal volume forms the final representation for
the point-level spatio-temporal context of a trajectory.

3.3. Intra-trajectory Context: Trajectory Transi-
tion Descriptor

The point-level context characterizes mainly the what
part of the video, namely what object components appear
in the videos. For action recognition, however, the dynamic
properties of these object components are more essential in
characterizing the actions, e.g. for the action of standing up
or getting out car.

The Markov chain is a powerful tool for modeling the
dynamic properties of a system. Its merit mainly lies at
its capability in representing directed causal and probabilis-
tic relations. The markov stationary distribution, associated
with an ergodic Markov chain, offers a compact and effec-
tive representation for a dynamic system. In this work, each
trajectory or the entire video is considered as a dynamic sys-
tem, and we expect to extract such a compact representation
to measure the spatio-temporal context within this dynamic
system. Before formally demonstrating the intra-trajectory
context modeling, we give a brief introduction to the related



concepts and properties on Markov chain process. Most te-
chinical details here can be found in [1].

A Markov chain is a sequence of random variables
[X1, X2, X3, · · · ] with the Markov property, namely given
the present state, the future and past states are indepen-
dent. Formally P (Xn+1 = x|Xn = xn, · · · , X1 = x1) =
P (Xn+1 = x|Xn = xn). The possible values of Xi form
a countable set S called the state space of the chain. When
the state space is finite (assuming K states), the transi-
tion probability distribution can be represented by a ma-
trix PK×K , named the Markov (stochastic) transition ma-
trix. PK×K has the following three properties: 1) pij =
P (Xn+1 = j|Xn = i); 2) pij ≥ 0; and 3)

∑K
j=1 pij = 1.

Definition 3.1 (Ergodic Finite-State Markov Chains) A
finite-state Markov chain is said to be ergodic (aperiodic
irreducible) if every state is accessible from any state [1].

Intuitively, an ergodic Markov chain can be considered as a
simple connected graph in its state space. This interpreta-
tion is crucial for our later formulations.

Theorem 3.2 Any ergodic finite-state Markov chain is as-
sociated with a unique stationary distribution (row) vector
π, such that πP = π [1].

The following theorem provides a method to approximate
the vector π.

Theorem 3.3 1) The limit A = limn→∞An exists for
all ergodic Markov chains, where the matrix An =

1
n+1 (I + P + · · ·+ Pn). 2) Each row of A is the unique
stationary distribution vector π [1].

Hence when the ergodicity condition is satisfied, we can
approximate A by An, where

An =
1

n+ 1
(I + P + · · ·+ Pn) , for n <∞. (2)

In all our experiments, we set n = 50. To further reduce the
approximation error when using a finite n, π is calculated
as the column average of An.

The above discussion suggests the possibility of encod-
ing a trajectory by the Markov stationary distribution π if
it can somehow be converted into an ergodic finite-state
Markov chain. To facilitate this conversion, a finite num-
ber of states are sought and quantization naturally gets in-
volved1.

For two point P and P ′ within two consecutive frames
along the same trajectory, we denote the displacement vec-
tor D =

−−→
PP ′. Note that since the temporal component

1We are reluctant to employ the term Hidden Markov Model (HMM)
for the current problem for avoid confusion. Compared to the three classic
problems HMM deal with (see e.g. Sec-3.10 [3]), we have explicitly de-
fined all states, and then generated the sparse state transition matrix. The
whole procedure is feedforward and hence less evoluted, as compared to
the solutions to the classic HMM problems.

Figure 3. Illustration of the process to generate the trajec-
tory transition descriptor for a trajectory. (a) Every displace-
ment vector D is quantized in terms of magnitude and orienta-
tion. (a)→(b) The successive state transition is transformed into
a directed graph (state-space diagram). (b)→(c) The state dia-
gram is translated into the occurrence matrix, which is further row-
normalized into a valid Markov transition matrix P. (c)→(d) The
unique stationary distribution vector π is computed for P. (Refer
to the electronic version for best view)

of D is deterministic (the frame interval), we will ignore it
in subsequent discussion and assume D comprises spatial
components only, namely D = (∆x,∆y). To perform a
reasonable quantization on D, we take into consideration
both the magnitude and orientation (Fig. 3 (a)). For mag-
nitude, we set 3 uniform quantization levels, whereby ‖D‖
is first normalized by the largest displacement magnitude
‖D‖max residing with the same trajectory. This normaliza-
tion is to counter the effect of scale, and thus the quantiza-
tion that follows is scale invariant. For orientation, we di-
vide the full circle into 8 equal sectors, each subtending 45◦.
The combination of magnitude and orientation quantization
results in 24 bins in polar coordinate. We append an addi-
tional bin to collect the zero movement, producing 25 bins.
After quantizing all displacement vectors along a trajectory,
we translate the sequential relations between theses vectors
into a directed graph, which is similar to the state diagram of
a Markov chain (Fig. 3 (b)). Here we get 25 vertices corre-
sponding to the 25 quantization states, and weighted edges
corresponding to the occurrence of each transition between
the states. We further establish an equivalent matrix repre-
sentation of the graph, and perform row-normalization on
the matrix to arrive at a valid transition matrix P for a cer-
tain Markov chain (Fig. 3 (c)). Once we obtain the transi-
tion matrix P and make sure it is associated with an ergodic
Markov chain2, we can use Eqn. (2) to compute π (Fig. 3

2We initialize the state diagram with some negligible weights (we use
w0 = 0.15 throughout our experiments) between any two vertices before
we calculate the occurrences. This trick applies to similar situations after.



(d)).
We employ the same procedure to transform every tra-

jectory within a video into its stationary vector representa-
tion π. In order to represent all trajectories over a spatio-
temporal volume in a fixed length manner, we also employ
the bag of words method (we set K = 1000) to build a
histogram of trajectory occurrences based on the extracted
Markov chain stationary distribution features.

3.4. Inter-trajectory Context: Trajectory Proximity
Descriptor

The modeling of point-level context and intra-trajectory
context provides informative clues for the actions in realis-
tic videos. However, these context features are mainly de-
signed for solo-actions involving only one object, and not
good at characterizing the actions involving two or even
more objects, e.g. kissing and shaking hands, etc. In this
subsection, we introduce the inter-trajectory context mod-
eling for offering such capabilities in characterizing action
between objects.

Specific to the local features in images and videos, bag of
words only encodes the global statistic but misses more de-
tailed information, such as the relative position of features
or local density of features, etc. A common way to com-
pensate for this information loss is to use multi-scale pyra-
mids [7] or spatio-temporal grids [6] to produce a coarse
description of the feature layout, but these methods are still
limited in characterizing details of the above information.

Building upon the Markov stationary distribution dis-
cussed in the previous subsection, we formulate more local-
ized relations between trajectories in this subsection. For
the sake of simplicity, we denote the spatio-temporal po-
sition of a trajectory as its geometric center o, equiva-
lently o = (x̄, ȳ, t̄). Suppose there are m classes of tra-
jectories by the K-means algorithm in the last subsection,
K1,K2, · · · ,Km. For a particular trajectory s of class
Ki at (xo, yo, to), we consider a spatio-temporal volume
Vs−xyt defined as

Vs−xyt = {(x, y, t) | |x− xo| ≤ δx, |y − yo| ≤ δy,
0 ≤ t− to ≤ δt}. (3)

So Vs−xyt is a cuboid spatially centered at o with dimen-
sion 2δx×2δy while temporally forward with a duration of
δt (Fig. 4 (a)). We calculate the local occurrence statistics
of all types of trajectories within the cuboid associated with
s. Repeating this process for all trajectories within the video
sequences under consideration and collecting the results by
trajectory classes, we arrive at an occurrence matrix C as,

cij =
∑
s∈Ki

# (Vs−xyt,Kj) , (4)

where # (Vs−xyt,Kj) denotes the number of trajectories
falling into category Kj and within the volume of Vs−xyt.

Figure 4. Illustration of the process to generate the trajectory
proximity descriptor for a spatio-temporal volume. The spatio-
temporal location of a trajectory is simplified as its geometric cen-
ter. (a) For any trajectory, a local statistic of different trajectories
is formed in its temporal forward proximity. (a)→(b) All such
statistics within a spatio-temporal volume are summarized by a
weighted directed proximity map. (b)→(c) The proximity map is
converted into an occurrence matrix, and further row-normalized
into a valid Markov transition matrix P. (c)→(d) The station-
ary distribution vector π is hence obtained to represent the inter-
trajectory context. (Refer to the electronic version for best view)

From this, we can convert C into a valid transition matrix P
for a Markov chain process, and obtain the informative vec-
tor π (Fig. 4 (b) & (c)) for characterizing inter-trajectory
context. The dimension of Vs−xyt is determined by the
three parameters δx, δy and δt. Setting these parameters
properly is critical here since: 1) too small a cuboid can
contain only very few or even no trajectories, and hence
the distribution information provided is highly unreliable;
whereas 2) a too large size cuboid encloses too many trajec-
tories, even those that are far apart, therefore the proximity
information provided is oversmoothed. In all the experi-
ments, we set δx, δy and δt to be a fraction of the video
dimension in x, y, and t direction, respectively. Namely,
δx = x/fx, δy = y/fy , and δt = t/ft. This setting ensures
the volume of the cuboid is adapted with the scale of the
video sequences. We observe fx = fy = ft = 5 generally
gives satisfactory results.

The proposed technique here to encode the trajectory in-
teraction information is not meant to be a replacement of
the techniques such as multi-resolution and spatio-temporal
grids. Rather, it aims to provide complementary local distri-
bution information that is less structural than that conveyed
by other techniques. In fact, to maximally utilize the avail-
able information, we follow [6] and apply all the 1×1, 2×2,
3×3 (not applicable to trajectory proximity descriptor), hor-
izontal h3 × 1, vertical v3 × 1, and center-focused o2 × 2
spatial grids, and non-overlapping equal division t1, t2, t3,
plus centered focused ot2 temporal grids. The combination



of six spatial grids with four temporal binnings results in 24
possible spatio-temporal grids. For the three levels of con-
text encoded by the SIFT average descriptor (SIFT), Trajec-
tory Transition Descriptor (TTD), and Trajectory Proximity
Descriptor (TPD), the combination of these descriptors and
spatio-temporal grids brings out F1 (6× 4 = 24 channels),
F2 (6× 4 = 24 channels), and F3 (5× 4 = 20 channels) in
order, resulting in 68 feature channels in total.

4. Pruning with Multiple-Kernel Learning
These 68 feature channels essentially involve overlaps,

although they are in general expected to be complementary
to each other. The best performance of a particular action
category generally entails only a few of the many feature
channels. To optimize the combination of different feature
channels and hence to produce the best prediction results
pose a great challenge here. The multi-channel SVM and
greedy search taken by [6] as suggested in [24] do the job in
a brute-force manner, resulting in prohibitive computational
requirement for large-scale problem with many feature ker-
nels and evaluation samples. In such situation it is desirable
a subset of the many channels can somehow be roughly se-
lected, maximally retaining the channels of the candidate
best combinations, followed by greedy search over over the
subset of channels.

The recent development of Multiple Kernel Learning
(MKL) technique provides such possibility. Different from
tradition kernel-based method which allows for only one
kernel, MKL considers a convex combination of K ker-
nels [17], k (xi,xj) =

∑K
p=1 βpkp (xi,xj), s.t. βp ≥

0,
∑K

p=1 βp = 1. This mechanism provides great flexi-
bility since each kernel kp can operate on distinct set of
features and each feature can be associated with different
types of kernels simultaneously. There are several equiv-
alent formulation to MKL, here we adopt [17] for our bi-
nary classification. For N data points (xi, yi) where yi ∈
{±1}, xi is translated via K mappings Φp (x) 7→ RDp ,
p = 1, · · · ,K, from the input space into K feature spaces
(Φ1 (xi) , · · · ,ΦK (xi)) where Dp denotes the dimension-
ality of the p-th feature space. The learning process involves
solving the optimization problem,

min
1
2

(
K∑

p=1

βp‖wp‖2

)2

+ C

N∑
i=1

ξi, (5)

w.r.t. wp ∈ RDp , ξ ∈ RN
+ , β ∈ RK

+ , b ∈ R,

s.t. yi

(
K∑

p=1

βpwT
k Φp (xi) + b

)
≥ 1− ξi,

K∑
p=1

βp = 1.

This can be converted into a Semi-Infinite Linear Program-
ming (SILP) problem and solved. The optimum weight β
can be regarded as a natural indication of the importance

of each channel, and hence can be used as the criterion for
channel selection. This problem will be further investigated
in Sec-5.3.

5. Experiments and Discussion
In this section, we systematically evaluate the effective-

ness of our proposed hierarchical spatial-temporal context
model on two realistic human action and event databases,
i.e. the HOHA database of movie videos used in [6] and the
LSCOM database of news videos used in [20]. A brief sum-
mary of these two databases is provided in Table 1. More
details about the databases can be found in [6], [20].

Table 1. A summary of the two databases used for evaluation.
Database HOHA LSCOM
# Classes 8 14

# Train Videos 219 3416
# Test Videos 211 about 16000

Source Movie clips News video shots
Task Actions Actions and Events

These two databases are chosen for evaluation because
they exhibit the difficulties in recognizing realistic human
actions, in contrast to the controlled settings in other related
databases. The problem of recognizing human actions is
essentially of multi-label classification, and hence we adopt
the one-against-all approach for performance evaluation.

5.1. Results on HOHA Database

In this subsection, we compare our proposed hierarchical
spatio-temporal context model with the Space-Time Inter-
est Point (STIP) proposed in [6] for recognizing human ac-
tions. To explicitly evaluate the effectiveness of individual
model in our proposed framework, we follow the formula-
tion in [6] to employ multi-channel χ2 kernel for combining
multiple channels of features and use greedy search to find
out the best combination. The combined kernel function is
given as

K (Hi, Hj) = exp

[
−
∑
c∈C

1
Ac
Dc

(
Hc

i , H
c
j

)]
, (6)

where Hc
i = {hc

in} and Hc
j =

{
hc

jn

}
are two histograms

extracted in channel c for the i-th and j-th samples respec-
tively, whereas Dc (Hi, Hj) is the χ2 distance, namely

Dc

(
Hc

i , H
c
j

)
=

1
2

Nc∑
n=1

(
hc

in − hc
jn

)2
hc

in + hc
jn

, (7)

and Ac is a normalization parameter set as in [6].
We first individually evaluate the performances of the

proposed three levels of spatial-temporal context (not pre-
sented here), namely SIFT average descriptor (SIFT), tra-



Figure 5. Detailed performance comparison of our hierarchical spatial-temporal context model with the STIP features in [6] for
action classification on the HOHA database. Each class group from left to right: TTD, SIFT+TTD, TTD+TPD, SIFT+TTD+TPD, STIP.

jectory transition descriptor (TTD), and trajectory proxim-
ity descriptor (TPD). Then we evaluate the performances for
various combinations: TTD, SIFT+TTD, TTD+TPD, and
SIFT+TTD+TPD, and compare the Average Precision (AP)
with STIP features in [6]. Note that the latter one reported
the state-of-the-art performance on this database.

The detailed performance comparison is shown in
Fig. 5, from which we can make the conclusion that
our proposed hierarchical spatial-temporal context model
(SIFT+TTD+TPD) always yields higher AP performance
than STIP features. More specifically, the Mean AP (MAP)
is improved from the latest reported 38.39% in [6] to 47.1%
based on our proposed new features.

Another observation is that the point-level context
(SIFT) and inter-trajectory context (TPD) features can both
enhance the discrimination power of the intra-trajectory
context features for every class (except for Kiss), and the
performance is increased from 30.36% for TTD only to
44.94% (38.17%) when SIFT (TPD) is combined with
TTD. The advantage of our proposed features over STIP
features can be attributed to the explicit encoding of motion-
related information within a relatively long period. The
STIP features in [6] also encode the motion information,
i.e. Histogram of Flow, which is however weak and noisy in
characterizing human actions.

5.2. Results on LSCOM Database

On the LSCOM database, the experiments are designed
to evaluate the algorithmic capability of our model in recog-
nizing human actions or even more advanced simple events.
This database was collected from the TRECV05 Challenge
and annotated by humans, and its size is relatively large
compared with other databases.

This database was used in [20]. The authors have fo-
cused on feature extraction and event description, hence
only single-level Earth Mover’s Distance (EMD) was
adopted. To facilitate a fair comparison, we first use
only the channels without grid strategy for experiments on
this database. The kernel combination technique listed in

Eqn. (6) is adopted to fuse different channels. The 3rd col-
umn (denoted as 3CHMUL) of Table 2 shows these results,
from which we can observe that for most classes, our pro-
posed features without grid strategy substantially improve
the performance (AP) compared with the algorithm pro-
posed in [20]. The MAP is increased from 25.96% in [20] to
40.67% (by 14.7%). Then we allow all possible grids to our
context descriptions, and search for the best combination of
channels as explained previously. The results are presented
in the 4th column of Table 2, and the performance is fur-
ther improved over 3CHMUL by 2.4%. Moreover, there are
also several classes that our proposed model has not han-
dled well, such as the People-Marching and Exiting-Car.
One possible reason is that in such situations, the trajectory
information our model exploit is haphazard and hence ru-
ins the performance. This is one point which needs further
investigation.

The work in [20] mainly concentrated on using SIFT
keypoints to extract motion vectors, but did not go one step
further to model the trajectories, which are better represen-
tations of motion dynamics and variations. The encoding
of transient motion vectors, instead of the sequential rela-
tion of motion vector that forms a trajectory, has limited the
capability of the algorithm in [20] to solve the action recog-
nition problem.

5.3. Kernel Pruning with MKL

The greedy search scheme for best channel combination
as proposed in [6] is attractive because of its non-decreasing
nature (the search will terminate if the performance starts to
drop). Nevertheless, it could be computationally prohibitive
if a number of useful channels are to be selected from a
large collection of channels. Formally let the total number
of channels beN , and the desirable subset of channels be of
size k. Then to seek for a global optimum selection, it costs
Ck

N = N !
(N−k)!k! evaluations of single kernel SVMs.

Towards saving the cost of greedy search, MKL has
shown good promise. It has been experimentally verified
in [17] and several other related works that MKL is effec-



tive in kernel selection. Hence it would be an economic
alternative that MKL can roughly select those kernels that
are important for discrimination. These roughly selected
kernels can then be fed into other module for further pro-
cessing at a lower cost. More specifically, if we expect to
select one best combination from the Ck

N candidates, in our
implementation, we only need run MKL on these Ck

N ker-
nels once, and then MKL algorithm automatically selects
the few, e.g. k0, possible kernel combinations, and finally
we further evaluate the performance of these k0 for a best
candidate. It means we only need run SVMs 1 + k0 times,
instead of Ck

N times, which greatly saves the time for algo-
rithm evaluation.

Table 2. Performance comparison on LSCOM database. The 14
class labels are 1) exiting-car, 2) hand-shaking, 3) running, 4)
demonstration-or-protest, 5) people-crying, 6) walking, 7) singing,
8) riot, 9) dancing, 10) shooting, 11) airplane-flying, 12) election-
campaign-greeting, 13) street-battle, and 14) people-marching.

Class ID Wang et al. [20] Our 3CHMUL Our BEST
1 34.8 12.86 16.8

2 11.4 27.78 29.76

3 68.7 57.38 61.04

4 36.8 45.21 47.44

5 7.2 44.01 50.19

6 39.2 46.89 47.2

7 11.0 77.14 79.51

8 23.0 19.45 18.25

9 19.5 61.58 63.83

10 12.4 30.37 35.53

11 23.1 64.13 67.22

12 13.9 38.06 38.87

13 32.3 30.95 32.83

14 30.2 13.60 14.51

MAP 25.96 40.67 43.07

6. Conclusions and Future Work

We have proposed a hierarchical framework to encode
point-level, intra-trajectory level, and inter-trajectory level
spatio-temporal context information of video sequences.
This framework has been evaluated on two realistic ac-
tion and event recognition databases, and has shown supe-
rior performance over the state-of-the-art features and al-
gorithms. We are planning to follow three lines in future
research. First, to investigate the properties of the three lev-
els of features and their individual merits. Moreover, it is
worthwhile to investigate the performance of these features
on trajectories generated by other mechanism, e.g. KLT.
Second, to further extend current model to explicitly ac-
count for relative motions, e.g. those caused by the frequent
camera motions. This kind of motions can create spurious
trajectories over frames, which may turn out to be detrimen-
tal to action recognition tasks. In the current work we have

tried to mitigate the effect of relative motions by limiting the
length of trajectories. The third direction is to develop semi-
supervised learning algorithm so as to harness the unlabeled
data for helping select best channel/kernel or combination.
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