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Abstract—Given measurements of the form yk = |〈ak,x〉|
for k = 1, . . . ,m, is it possible to recover x ∈ Cn? This
is the generalized phase retrieval (GPR) problem which is
a fundamental task in various disciplines. Natural nonconvex
heuristics often work remarkably well for GPR in practice, but
lack clear theoretical explanations. In this paper, we take a
step towards bridging this gap. We show that when the sensing
vectors ak’s are generic (i.i.d. complex Gaussian) and the number
of measurements is large enough (m ≥ Cn log3 n), with high
probability, a natural least-squares formulation for GPR has the
following benign geometric structure: (1) all global minimizers
are the target signal x and its equivalent copies; and (2) the
objective function has a negative curvature around each saddle
point. Such structure allows a number of algorithmic possibilities
for efficient global optimization. We describe a second-order
trust-region algorithm that provably finds a global minimizer
in polynomial time, from an arbitrary initialization.

I. INTRODUCTION

Generalized phase retrieval (GPR) concerns the recovery
of an unknown complex signal x ∈ Cn from a set of m
measurements: yk = |〈ak,x〉| for k = 1, . . . ,m. This problem,
and particularly its specialized version where ak’s are the
Fourier basis vectors, arise in various applied fields, such as
electron microscopy [1], astronomy [2], and optical imaging
[3]. In these applications, one wants to recover a complex
signal from its Fourier magnitudes, as phase information is
missing due to physical constraints.

For decades, PR has seen a host of nonconvex formulations
and heuristic algorithms that often work surprisingly well
in practice. In contrast, investigation into provable recovery
algorithms has started only relatively recently. We refer the
readers to [4, 5] for an updated account of PR.

In this paper, we show that one can provably solve the GPR
problem when the measurement vectors ak’s are numerous and
generic enough. In particular, we focus on a natural least-square
formulation [4, 5] studied theoretically in [6],

min
z∈Cn

f(z)
.
=

1

2m

m∑
k=1

(
y2k − |〈ak, z〉|

2
)2
. (1)

We assume the ak’s are independent complex Gaussians:

ak = (Xk + iYk) /
√

2, Xk, Yk ∼ N (0, In). (2)

f(z) is a 4-th order polynomial in z, and is nonconvex. Existing
theoretical results on this and related formulations require
careful initialization in the vicinity of the ground truth [6].
A-priori, there is little reason to believe that simple iterative
methods can solve this problem without special initialization.

Fig. 1. Gradient descent with random initializations seems to always return a
global solution for (1)! Here n = 100, m = 5n logn, step size µ = 0.05,
and stopping criterion is ‖∇zf(z)‖ ≤ 10−5. For the same set of random
measurements, the experiments are repeated for 100 times with different
random initializations. (Left) Final distance to the target; (Right) Final function
value (0 if globally optimized). Both vertical axes are on − log10(·) scale.

A. A Curious Experiment

We apply gradient descent to f(z), starting from a random
initialization z(0):

z(r+1) = z(r) − µ∇zf(z(r)),

where the step size µ is fixed for simplicity. The result is
quite striking (Fig. 1): for a fixed problem instance (fixed
random measurements and fixed target x), gradient descent
seems to always return a global minimizer, across many random
initializations! This contrasts with the typical “mental picture”
of nonconvex objectives as possessing many spurious local
minimizers.

B. A Geometric Analysis

The numerical surprise described above is not a completely
isolated observation – simple heuristic methods for GPR often
work surprisingly well (see [4, 5] and references therein). In this
paper, we take a step towards explaining this phenomenon. We
show that although the function (1) is nonconvex, it actually has
benign global geometry which allows it to be globally optimized
by efficient iterative methods, regardless of the initialization.

Fig. 2 plots the function landscape of f(z) for large m
and z ∈ R2. It is remarkable that (i) the only local and
global minimizers are exactly ±x;1 (ii) there are saddle points
(and a local maximizer), but around them there is negative
curvature in the ±x direction. Intuitively, any algorithm that
can successfully escape this kind of saddle points (and local

1Note that the global sign cannot be recovered.



Fig. 2. Function landscape of (1) for x = [1; 0] and m→∞. The only local
and global minimizers are ±x. There are two saddle points near ±[0; 1/

√
2],

around each there is a negative curvature direction along ±x. (Left) The
function graph; (Right) The same function visualized as a color image.

maximizers) can in fact find a global minimizer, i.e., recover
the target signal.

We prove an analogous geometric structure exists, with high
probability (w.h.p.)2, for high-dimensional, complex signals,
when m is reasonably large (Theorem II.2). Specifically, we
show that when m ≥ Cn log3 n, w.h.p., (i) the only local/global
minimizers to (1) are the target xeiφ for all φ ∈ [0, 2π); 3 (ii)
at any point in Cn, either the gradient is large, or the curvature
is negative in a certain direction (i.e., the Hessian has at least
one negative eigenvalue), or it is near a minimizer such that the
function is locally strongly convex in nontrivial directions (that
f(z) = f(zeiφ) for all φ ∈ [0, 2π) induces a flat direction).

Because of this global geometry, a wide range of efficient
iterative methods can obtain the global optimum, regardless
of initialization. Examples include the noisy gradient and
stochastic gradient methods [7] (see also [8]), curvilinear
search [9] and trust region methods [10, 11]. The key property
that the methods must possess is the ability to escape saddle
points at which the Hessian has a strictly negative eigenvalue.

We corroborate this claim by developing a second-order
trust-region method for this problem, and prove that (Theo-
rem III.1) (i) from any initialization, it efficiently obtains a
close approximation of the target vector x (up to a global
phase) and (ii) it exhibits quadratic convergence in the vicinity
of the global minimizer.

C. Prior Arts and Connections

Although heuristic methods for GPR have been used effec-
tively in practice [4, 5, 12, 13], only recently have researchers
begun to develop methods with provable performance guar-
antees. The first results of this nature were obtained using
semidefinite programming relaxations [14–19]. While this
represented a substantial advance in theory, the computational
complexity limits the practicality of this approach.4

Recently, several provable nonconvex methods have been
proposed for phase retrieval. [23] augmented the seminal
error-reduction method [12] with spectral initialization and

2The probability is with respect to drawing of ak’s.
3Note that global phase cannot be recovered.
4Another line of research [20–22] seeks to co-design the measurements and

recovery algorithms based on frame- or graph-theoretic tools.

resampling, and thereby provided the first provable nonconvex
method for GPR. [6] studied the nonconvex formulation (1)
under the same hypotheses as this paper, and showed that a
spectral initialization plus local gradient descent recovers the
true signal with near-optimal sample complexity. [24] worked
with a different nonconvex formulation, and refined the spectral
initialization and the local gradient descent with a step-adaptive
truncation. With the modifications, they reduced the sample
requirement to the optimal order.5 All three analyses are local in
nature, and depend on the spectral initializer being sufficiently
close to the target signal.

In contrast, we explicitly characterize the global function
landscape of (1). The geometric structure actually allows
several algorithmic choices that need no special initialization.
In fact, the spectral initialization used in [6] lands the iterate
sequence in the restricted strongly convex regions in our results
(Theorem II.2). The analysis of [6] is based on a property that
ensures the gradient descent method is locally contractive near
the target set, which is closely linked to local convexity. [25]
and [26] explicitly established local strong convexity near the
target set for GPR in Rn.

The approach taken here is similar in spirit to our recent
geometric analysis of a nonconvex formulation for complete
dictionary learning [27]. For that problem, we also identified
a similar geometric structure that allows efficient global
optimization. [11] provides a high-level overview of this
common structure (see also [7, 28]. )

D. Definitions and Notations

We use ‖·‖ to denote the `2-norm for vectors, and the
operator norm for matrices. We use x ∈ Cn to denote the target
vector. Since we only hope to recover it up to a global phase
shift, let us denote the target set as X .

=
{
xeiθ : θ ∈ [0, 2π)

}
.

For each complex vector z ∈ Cn, let <(z) and =(z) be the
real and imaginary parts of z, respectively. Define

φ(z)
.
= arg minθ∈[0,2π)

∥∥z − xeiθ∥∥ , (3)

h(z)
.
= z − xeiφ(z), dist(z,X )

.
= ‖h(z)‖ . (4)

The function f(z) : Cn 7→ R is not complex-differentiable. We
adopt the Wirtinger derivatives [29], which can conveniently
be considered as partial derivatives:
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where we have that formally

∂f

∂z

.
=
∂f(z, z)

∂z
|z=constant,

∂f

∂z

.
=
∂f(z, z)

∂z
|z=constant .

Let ∇zf and ∇zf denote the first and second part of ∇f ,
respectively. The Wirtinger calculus is simple in expression

5In addition, [24] shows that the measurements can be non-adaptive, in the
sense that a single, randomly chosen collection of vectors ai can simultaneously
recover every x ∈ Cn. Results in [6, 23] and this paper pertain only to adaptive
measurements that recover any fixed signal x with high probability.



and analogous to those we obtain in the real case, we refer
the readers to [29] for more details.

All technical proofs are deferred to the full version [30].

II. A GLIMPSE INTO HIGH DIMENSIONAL GEOMETRY

We have seen the low-dimensional plot of the function graph
above. In this section, we present the quantitative results for
high-dimensional, complex signals. We work out the “expected”
version of the function landscape first, i.e., let m→∞.

Theorem II.1 (Characterization of E [f(z)]). When x 6=
0, for the asymptotic function Ea [f(z)], the only crit-
ical points are 0, X (the target set) and C .

={
z ∈ Cn : x∗z = 0, ‖z‖ = ‖x‖ /

√
2
}

, which are the local
maximizer, the set of global optimizers, and the set of saddle
points, respectively. Moreover, the saddle points and local
maximizer have a negative curvature in the xeiφ(z) direction.

Basically, this says the geometric structure we observed
about f(z) for low-dimensional case qualitatively holds for
high-dimensional signals also. Interestedly, we can show that
the qualitative aspects of the geometric structure remain for
high-dimensional, complex signals, even when the number of
samples is large yet finite.

Fig. 3. Schematic illustration of partitioning regions for Theorem II.2. This
plot corresponds to Fig. 2, i.e., the target signal is x = [1; 0] and measurements
are real Gaussians, such that the function is defined in R2.

Theorem II.2 (Characterization of f(z)). There exist positive
absolute constants c, C,C1, C2, C3 and C4, such that when
m ≥ Cn log3 n, it holds with probability at least 1 − cm−1
that the function f(z) defined in (1) has no spurious local
minimizers and the only local/global minimizers are exactly
the target set X . Quantatitively, for regions R1, Rz2 , Rh2 , and
R3 that together cover Cn,[
xeiφ(z)

xeiφ(z)

]∗
∇2f(z)

[
xeiφ(z)

xeiφ(z)

]
≤ −C1 ‖x‖4 , ∀z ∈ R1,

z∗∇zf(z)

‖z‖
≥ C2 ‖x‖2 ‖z‖ , ∀z ∈ Rz2 ,

< (h(z)∗∇zf(z))

‖h(z)‖
≥ C3 ‖x‖2 ‖z‖ , ∀z ∈ Rh2 ,[

g(z)

g(z)

]∗
∇2f(z)

[
g(z)

g(z)

]
≥ C4 ‖x‖2 , ∀z ∈ R3,

where h(z) is defined in (4), and

g(z)
.
=

{
h(z)/ ‖h(z)‖ if dist(z,X ) 6= 0,

w ∈ Sn−1,=(w∗z) = 0 if z ∈ X .

Here

R1
.
=

{
z : 8 |x∗z|2 +

401

100
‖x‖2 ‖z‖2 ≤ 398

100
‖x‖4

}
,

Rz2
.
=

{
z : < (〈z,∇zE [f ]〉) ≥ 1

100
‖z‖4 +

1

500
‖x‖2 ‖z‖2

}
,

Rh2
.
=

{
z :

11

20
‖x‖ ≤ ‖z‖ ≤ ‖x‖ ,dist(z,X ) ≥

‖x‖
3
,

< (〈h(z),∇zE [f ]〉) ≥ 1

250
‖x‖2 ‖z‖ ‖h(z)‖

}
,

R3
.
=
{
z : dist(z,X ) ≤ ‖x‖ /

√
7
}
.

Fig. 3 gives an idea on how the different regions cover the
whole space.

Since (1) and associated derivatives take the form of
summation of m independent random variables, the proof
involves concentration and covering arguments [31]. The main
challenge is that the function (1) is 4-th-order polynomial, and
so the quantities of interest are heavy-tailed random variables.
With only O(n log3 n) samples, the gradients and Hessians
of f do not concentrate uniformly about their expectations.
Fortunately, this heavy-tailed behavior does not prevent the
objective function from being globally well-structured for
optimization. By carefully partitioning the “large gradient
region” into two regions, we can show that the gradient is
uniformly large using quantities that depend only on the lower
tails of sums of fourth powers of independent (real) Gaussian
random variables. These quantities do concentrate uniformly,
because the fourth power of a Gaussian is nonnegative.

Theorem II.2 implies that the Wirtinger Hessian is indefinite
in region R1, and the Wirtinger gradient is lower bounded in
regions Rz2 and Rh2 , so that the function value can always be
decreased by following either xeiφ(z) or the negative gradient
directions −∇f . In region R3 which is around the global
minimizers, although the function is flat on the complex circle{
zeiθ : θ ∈ [0, 2π)

}
, it is strongly convex in any orthogonal

direction h(z) to the circle.
In sum, our objective f(z) has the benign geometry that

each z ∈ Cn has either large gradient or directional negative
curvature, or lies in the vicinity of a local minimizer around
which the function is locally restrictedly strongly convex.
Functions with this property lies in the ridable-saddle function
class [7, 11]. The particular geometric structure allows several
optimization methods that can escape the saddle points to
efficiently find a local minimizer6.

6The definition of ridable-saddle class does not require all local minimizers
to be global; here our objective has this additional good property that effectively
allows us to do global optimization.



III. MODIFIED TRUST-REGION ALGORITHM

To demonstrate that the geometric structure we proved above
is favorable for global optimization, we describe a second-order
trust-region method (TRM) [10] that escapes saddle points,
and provably finds one global minimizer of (1) in polynomial
time, from an arbitrary initialization.

In each step, the method forms a quadratic approximation
to the function f(z) at the current iterate z(r) as

f̂(δ; z(r)) = f(z(r)) +

[
δ

δ

]∗
∇f(z(r))

+
1

2

[
δ

δ

]∗
∇2f(z(r))

[
δ

δ

]
.

When z(r) is a saddle point, the approximation reduces to

f̂(δ; z(r)) = f(z(r)) +
1

2

[
δ

δ

]∗
∇2f(z(r))

[
δ

δ

]
.

It is obvious that if ∇2f(z(r)) has a negative eigenvalue,
which we proved above, the associated eigenvector is a local
descent direction. This is the rationale for choosing second-
order method.

Typical trust-region method goes by minimizing the approx-
imation within a small ball, i.e., the trust region. Here we
consider a modified version:

min
δ∈Cn

f̂(δ, z(r)), s.t. =(δ∗z(r)) = 0, ‖δ‖ ≤ ∆,

where ∆ controls the trust region radius. Since the function is
flat on the complex circle C =

{
z(r)eiθ : θ ∈ [0, 2π)

}
, along

iz(r) which is tangent to the C, the reduction in function value
is limited. The additional linear constraint forces the movement
δ to be geometrically orthogonal to the trivial direction iz. This
simple modification helps the algorithm to converge faster in
practice, and guarantees quadratic convergence near the optima
in theory.

To tackle the modified trust-region subproblem, note
that the linear constraint defines a subspace S(z(r))

.
={

w ∈ Cn : =
(
w∗z(r)

)
= 0
}

of dimension 2n− 1 over R2n.
Take any matrix U(z(r)) ∈ Cn×(2n−1) whose columns form
an orthonormal basis7 for the subspace S(z(r)). Take U (r) for
short of U(z(r)) and let δ = U (r)ξ with ξ ∈ R2n−1, then
the subproblem can be reduced to the classical trust-region
subproblem

min
ξ∈R2n−1

f̂(ξ; z(r)), s.t. ‖ξ‖ ≤ ∆, (5)

where

f̂(ξ; z(r)) = f(z(r)) + ξ>g(z(r)) +
1

2
ξ>H(z(r))ξ,

with

g =

[
U (r)

U (r)

]∗
∇f, H =

[
U (r)

U (r)

]∗
∇2f

[
U (r)

U (r)

]
.

7Here a matrix U is orthonormal means <
(
U∗

i Uj

)
= δij for any columns

Ui and Uj of U , where δij denotes the Kronecker delta function.

The trust-region subproblem (5) can be efficiently solved by
rooting finding [32] or SDP relaxation [33]. Once the solution
ξ? to the subproblem (5) is obtained, the iterate is updated
by z(r+1) ← z(r) + δ? with δ? = Uξ?. The choice of trust
region size ∆ is important both for the convergence theory and
practical effectiveness. Following standard recommendations,
we use a backtracking approach which modifies ∆ from
iteration to iteration based on the accuracy of the quadratic
approximation of f(z).

For analysis, we fix the trust region size ∆ and prove the
following convergence result.

Theorem III.1 (TRM Convergence). Suppose m ≥ Cn log3 n
for a sufficiently large constant C. Then with probability at least
1− cam−1, the TRM algorithm with an arbitrary initialization
z(0) ∈ CB(R0), where R0

.
= 3( 1

m

∑m
k=1 y

2
k)1/2, will return a

solution that is ε-close to the optimal set X in

cb

∆2 ‖x‖2
f(z(0)) + log log

(
cc ‖x‖
ε

)
steps, provided that

∆ ≤ cd(n7/2 log7/2m)−1 ‖x‖ .

Here ca through cd are positive absolute constants.

The proof is straightforward.
• When either the curvature is negative or the gradient is

strong (i.e., region R1,Rz2 and Rh2 ), one step reduces the
function value by a concrete amount.

• Under mild conditions, the iterates ultimately move into
the restricted strong convex region R3 around the optimal.

• In R3, the TRM algorithm behaves like a typical second-
order method on strongly convex functions with quadratic
sequence convergence.

Remark. Our analysis here is very conservative, Theorem III.1
suggests that, for fixed trust region size ∆, at least Ω(n7 log7m)
iterates are required for convergence. While in practice, TRM
algorithm converges in 30− 50 iterations for our simulations
with the backtracking strategy.

IV. EXPERIMENTAL RESULTS

To corroborate our theory, we run our trust-region methods
alongside gradient descent, on simulated data.

We set m : 1 ∼ 500 and n : 1 ∼ 100. For each
individual pair of (m,n), the sensing vectors {ak}mk=1 ∈ Cn
are generated as i.i.d. complex Gaussian CN (n), and ground
truth x ∈ Cn is uniformly drawn from the complex unit
sphere CB(1). All simulations are repeated independently for
10 times. Both the gradient descent and the trust-region solvers
are randomly initialized for each simulation. Since we only
hope to recover x up to a global phase, we judge success by
the following criteria∥∥∥z? − xeiφ(z?)∥∥∥ / ‖x‖ ≤ ε,
where z? is the algorithm output, and the error tolerance ε =
10−4. Fig. 4 shows the phase transition in the (n,m)-plane. Our



observation suggests that, using random initializations, both
gradient descent and trust-region methods can successfully
recover the signal with around m = 5n measurement with
at least constant probability. It also suggests that our current
analysis is still log factors away from the optimal. Finally, it
is quite striking that randomly initialized gradient descent also
succeeds here despite the presence of saddle points.

Fig. 4. Phase Transition for gradient descent (left) and trust region methods
(right).

V. CONCLUSION AND DISCUSSION

In this paper, we explicitly characterized the global geometry
of the phase retrieval problem. We conclude the paper by some
open challenges for future work: (i) While our analysis is for
complex Gaussian measurement, it is interesting to investigate
the possible extension to other more practical sensing schemes,
such as the masked Fourier measurements [17]. (ii) The sample
complexity is suboptimal by a poly-logarithmic factor. (iii)
Simulations in Section II and Section IV suggest that simple
gradient descent with random initialization succeeds despite the
presence of saddle points, how to understand such behaviors
in theory remains an open problem. (iv) This work joins recent
surge of theoretical understanding of nonconvex optimization
(see [11] and the references therein), it is interesting to see
whether our current geometric analysis can be generalized to
other nonconvex problems.
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