On Block-Reference Coherent Diffraction Imaging (CDI)

David Barmherzig

Joint work with Ju Sun, T. J. Lane, Po-Nan Li

June 28, 2018

David Barmherzig

CDI and phase retrieval

Detectors record intensities of diffracted rays \rightarrow phaseless data only!

Fraunhofer diffraction \longrightarrow intensity of electrical field \approx Fourier transform

$$|\hat{x}(f_1, f_2)|^2 = \left| \int x(t_1, t_2) e^{-i2\pi(f_1 t_1 + f_2 t_2)} dt_1 dt_2 \right|^2$$

David Barmherzig

イロト イポト イヨト イヨト

Phase retrieval algorithms

- Standard approach: Alternating projections method
- E.g. Fienup's Hybrid Input-Output (HIO) Method, etc.
- No guaranteed convergence (projection onto nonconvex sets)
- Often slow in practice

Extended-reference imaging

David Barmherzig

æ

Extended-reference imaging

Figure: Fienup et. al. HERALDO (2007)

- Add an adjacent reference
- Guaranteed recovery
- Solve a linear system

< 個 → < Ξ

Various proposed extended reference schemes:

- Fourier holography
- Podorov and Paganin (2007)
- Guizar-Sicairos and Fienup (2007)
- Algorithms presented are reference-specific

< □ > < 同 > < 回 > < 回 > < 回 >

Unified viewpoint for solving with a generic reference

- Analytical noise stability analysis
 - $\blacksquare \Rightarrow \mathsf{Explains}$ performance of different references
 - \blacksquare \Rightarrow More supporting evidence for a block-reference

< □ > < 同 > < 回 > < Ξ > < Ξ

Fourier duality

Recall: multiplication
$$\stackrel{\mathcal{F}}{\underset{\mathcal{F}^{-1}}{=}}$$
 convolution
 $|\mathcal{F}(x)|^2 \stackrel{\mathcal{F}}{\underset{\mathcal{F}^{-1}}{=}} x \star x$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

3

2

									(<u>;</u>]		
*	*	*	*	а	b	с	*	*	*	*	а	b	с	d
*	*	*	*	е	f	g	*	*	*	*	е	f	g	h
*	*	*	*	i	j	k	*	*	*	*	i	j	k	1
*	*	*	*	т	п	0	*	*	*	*	т	п	0	р

David Barmherzig

June 28, 2018 12 / 20

3

Ξ.

Ξ.

Generic algorithm

Given [X, R], solve:

$$\min_{X} \frac{1}{2} \|\widehat{C}_{[R,X]} - (R \star X)_Q\|_2^2$$

*C*_[R,X] is the (top-left) cross-correlation data
 (R ★ X)_Q is the (top-left) cross-correlation operator on X

June 28, 2018 16 / 20

イロト 不得 トイラト イラト 一日

Generic algorithm

Given [X, R], solve:

$$\min_{X} \frac{1}{2} \|\widehat{C}_{[R,X]} - (R \star X)_Q\|_2^2$$

•
$$\widehat{C}_{[R,X]}$$
 is the (top-left) cross-correlation data
• $(R \star X)_Q$ is the (top-left) cross-correlation operator on X
Note: $(R \star X)_Q$ is a linear operator!
 $\Rightarrow \widehat{X} = M_R^{-1} \left(\widehat{C}_{[R,X]}\right).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

June 28, 2018

16 / 20

David Barmherzig

Some algorithm analysis

Subsumes reference-specific algorithms

- Point reference (Fourier holography)
- L-shape reference (Fienup)
- Block reference (Podorov)
- M_R is lower-triangular $\Rightarrow O(n^2)$ runtime, O(n) in special cases
- Robust to noise and generalizable to beamstop

Analytical noise stability analysis

- Under Poisson noise, can explicitly calculate $\mathbb{E}\|\hat{X} X\|^2$
 - For low-frequency images, block reference has lowest error!
- Comparison of holography, L-shape, and block references

 \blacksquare \Rightarrow Error decreases with ref. absorption

Block-reference

- Constant absorption density
- Incident area greater or equal to specimen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Possible via lithography and nano-scale printing.
- Prototype design in process at SLAC.

A D N A B N A B N A B N