1D phase retrieval and spectral factorization

David Barmherzig

Joint work with Ju Sun

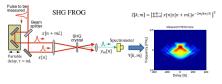
June 28, 2018

Stanford University

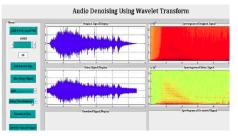
Image: A match a ma

1d phase retrieval

Given the oversampled Fourier transform magnitudes $|\mathcal{F}(x)|^2$, recover x.



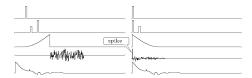
Frequency-resolved optical gating (FROG)



Wavelet-based speech processing

Spectral Factorization

 $\mathsf{PR}: |\mathcal{F}(x)|^2 \mapsto x \Longleftrightarrow \mathsf{spectral factorization}: x \star x \mapsto x$



Usually no unique solution (very different than 2D case!)Eg:

$$(6,5,-1) \star (6,5,-1) = (6,-35,62,-35,6)$$

 $(3,-7,2) \star (3,-7,2) = (6,-35,62,-35,6)$

<ロト <問ト < 目ト < 目ト

Usually no unique solution (very different than 2D case!)Eg:

$$(6,5,-1) \star (6,5,-1) = (6,-35,62,-35,6)$$

 $(3,-7,2) \star (3,-7,2) = (6,-35,62,-35,6)$

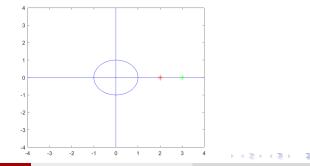
$$6 + 5z - z^2 = (z - 2)(z - 3) \rightarrow \text{Roots} : r_1 = 2, r_2 = 3$$

 $3 - 7z + 2z^2 = 2(z - 1/2)(z - 3) \rightarrow \text{Roots} : r_1 = 1/2, r_2 = 3$

э

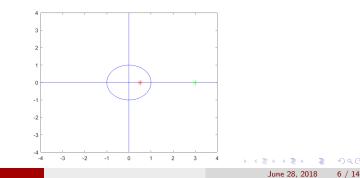
< □ > < □ > < □ > < □ > < □ >

In general, all solutions obtained by flipping roots in the unit circle, $r\mapsto \overline{r}^{-1}$.



In general, all solutions obtained by inverting roots in the unit circle, $r\mapsto \overline{r}^{-1}$.

$$6 + 5z - z^{2} = (z - 2)(z - 3) \rightarrow \text{Roots} : r_{1} = 2, r_{2} = 3$$
$$3 - 7z + 2z^{2} = 2(z - 1/2)(z - 3) \rightarrow \text{Roots} : r_{1} = 1/2, r_{2} = 3$$



- In general, for a signal $x \in \mathbb{R}^n$, up to 2^n possible solutions. (One for each root inversion.)
- Special case: *Z*{*x*} has all its roots on the unit circle. → Unique solution!

Least-squares minimization

Given $r = x \star x$, solve:

$$\min_{x} f(x) = \frac{1}{2} \|r - x \star x\|^{2}.$$
 (1.1)

L → ব E → E ∽৭ে June 28, 2018 8 / 14

Least-squares minimization

Given $r = x \star x$, solve:

$$\min_{x} f(x) = \frac{1}{2} \|r - x \star x\|^{2}.$$
(1.1)

Nonconvex function (⇒ in general NP-hard to find global minimum)
 Can we achieve success?

Why we care about least-squares

When any feasible global minimizer is acceptable, or x is root-unitary.

- When we can regularize to a particular solution (add priors).
 - Sparsity (*I*₁-regularization)
 - Symmetry
 - Known support

< □ > < 同 > < 回 > < 回 > < 回 >

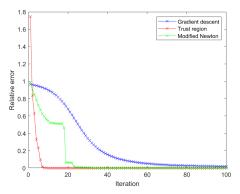
History: Wilson's method for spectral factorization

- (Wilson, 1969): Start from x = [1; 0, ..., 0] and apply Newton-Raphson to find the roots of g(x) = r - x ★ x.
- Surprise: guaranteed recovery!
- Observation: Newton-Raphson is equivalent to Gauss-Newton on a least-squares objective.

イロト イポト イヨト イヨト

Is Gauss-Newton special?

- Many numerical optimization algorithms:
 - Gradient descent
 - Trust region
 - Modified Newton
 - Many others...
- $\blacksquare \Rightarrow AII achieve success!$

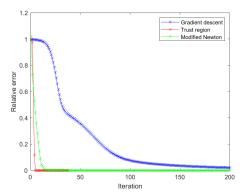


Case 1: the ground-truth x^* is Gaussian random.

4 A I

Is Gauss-Newton special?

- Many numerical optimization algorithms:
 - Gradient descent
 - Trust region
 - Modified Newton
 - Many others...
- $\blacksquare \Rightarrow \mathsf{AII} \text{ achieve success!}$



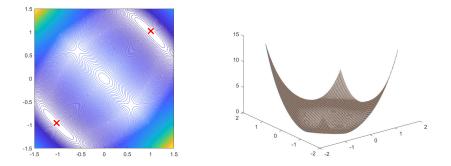
Case 2: the ground-truth x* has all its roots on the unit circle. (Problematic for other methods.)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

4 E b

Global landscape analysis

Landscape determines algorithm behavior



Recurrent theme in nonconvex optimization (e.g. Sun et. al., 2018)

4 6 1 1 4

A D N A B N A B N A B N

3

14 / 14

June 28, 2018

Open problems

Function landscape analysis

2D least-squares (new initialization)

David Barmherzig