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Problem Statement: » Planted Sparse Vector (PSV) Model: A single sparse » Apply the ADM algorithm (5) with A =1/,/p, using all rows » Phase Transition on Synthetic Data: p = 5nlog n.
» Glven a sparse vector Xg vector Xo embedded in an otherwise random subspace: of Y as initializations for q\%) to produceqy, ..., q dp. Solve the R
embedded in an n dimensional XO S = span (X0,91,...,0n-1) C RP, LF rounding (6) withr = qq, ..., q,, t0o produce di, ..., qp. | L] RN
subspace S C R¥, provided any where gk ~iq. (0, 1), and Xo ~i4. —Ber(0). - Seti* € argmin; ||YQ||o, with very high probability, - N
pasis of &, can we efficiently o Yq;- = X for some ~ # 0, provided
recover Xg? » Nonconvex / /f Minimization Problem: 4 04
. p > Q(n"logn), and 0 < 6.
» Equivalently, provided a matrix A € R(P~"*P whose min x|y, st xe8, |[x||,=1.
row span forms the subspace S, can we solve which is equivalent to
- A Sketch of Analysis il L L
N X, st Ax=0.x70 7 (1) min [Yal,, st [af,=1. 2) 4 |
o h . | € Optimizer o » Exploratory Experiments on Faces:
Motivation: where Y € RP*"ig an arbitrary orthonormal matrix whose o e e -
» In contrast to the standard sparse recovery problem columns form a basis ofs. - WV 2 o IZf t.“ccee: .
] o Jum wa L (a atlonary oint q
mxln 1X|lp, s.t. Ax=Db, » Theorem (Global Optimality for ¢' /¢ Recovery): _f?gé_t}lfp_é%l?__y _|_|'_<Cizzl<_(.>ﬁ'?_i_2 ________ G
convex relaxation works nearly optimally for generic Suppose S follows the PSV model, and q” be* the optimum 26 by ADM Algorithm ,
design of A, the Computational property of (1) IS not to (2)’ with very hllgh prObab”Ity’ we have Yq = {Xo Tor G(q) = |Q|1(‘|1)| ”(ﬁZ((ﬁ)”Q > % Figure: Four sparse vectors extracted by the ADM algorithm for one
nearly as well understood. some 5 # 0, prowded - el ! Initializer q* person in the Yale B database under different illuminations.
» Variants of (1) has been studied in numerical linear p > Q(nlogn), and < 0p. o S “
algebra, sparse PCA, blind source separation, Question 2: Can we efficiently solve (2) to global optimality? | NG _
dictionary learning (DL), spectral estimation and O e;
Pony's Problem, and graphical moael learning. Algorithm based on Alternating Direction Method (ADM) Under the PSV model, let q = [q1,qﬂT, G=1[91, - ,9n 1], |
— assume the OrthOnOrma| maitrix _ Elgure: Four sparse vectors extracted by the ADM algorithm fgr 10
EX|st|ng Work s Alternating Minimization: Consider a relaxation of (2): Y _ ‘ b G (GTP G)1/2 different persons in the Yale B database under normal illuminations.
| . onu o o |
~ (/> Recovery [Spielman et al.] and [Hand et al.]: min IYg —x|5+ M|y, st |ql,=1, Define a random proceszs over q € ST '
mxin Ixll;, st xi=1,xe€8,1<i<p. minimize the problem by alternating direction: 1 T T More Application Ideas?
. - = . . ] 2 — S _ > .
. Semll-Deflnlte Prongammlng (SDP) Relaxation: x(k+1) — arg min% Yq® — x|+ A x|, 3) Q(q) p;y vay Qi(q),Q ()] _ Intriguing Experiments on Dictionary Learning:
mxln Xl st <A a X> =0 WA =1, X=0 k+1 x -~ k 12 ° Good initialization: One of initializers q(o) =y, w.h.p
» Sum-of-Squares (SOS) Relaxation [Barak et al.]: q ):argqmmé Yq — x*) , s.t. ||q]l,=1. (4) ' o 1 4@/ T
ey )| > n
Method Recovery Condition Computation Complexity Closed form solutions of (3), (4) lead to one ADM iteration Unif <q, f1> th/( t) R
61/500 c 0(1 /\/ﬁ) Q(pi) ooty YTS)\ [Yq(k)] 5 » UNi orn&(zr)ogress daway 1rom ‘ge(qql).lrl O‘I“Q (ec)aﬁuse
SDP S 2(1/ﬁ) - Op°) @ = [YTS, [Yq®] ||, < ,e1> > (g, e) & — 2Dz o,
SOS p>Q(n?),0 € O(1)  high order poly(p) ore S x| — sian \ 1Q(q)][ \q1| 192/,
Question 1: Is there a practical algorithm that prov- w.e.re. A[.X] ~ Sianbolix N ) we show for any q € 8" with ;= < || < 3v6, w.h.p., i - N .
oy r r o vp or with g " frgm . » Initialization Strategy: Given Z = [Xp, 91, -+ ,9n_1], Xoi # 0, Q@) [1Qx(q) C =fticient algorithms can also achieve linear sparsity
ALY TECOVETS 4 spa? =0 > 1/ Xai — O (1/\/79) g ~N(0,1/pl) G(q) = = AWz > (7) regime for the squared dictionary learning under
Jeneric subspace o e E VIR P il el 0P the Bernoulli-Gaussian model!
dea: Because z'Is biased towards the optimizer q* = ey, - No jumps away from the cap: For all q with |gi| > 3/¢ . Generalization: Can we develop general tools for

Contributions of this Work use normalized rows of Z as initializations. Q(q)l/19@)l, > 5./0. (8) ;P |

Remark: Analysis shows that it works for the orthogonalized . . . o f (W),
» Proposed a simple ADM algorithm, addressed the version and invariant to rotations as well. » Location of the stationary point: Steps above implies if w pZ k(W)

s.t. we M ?

: : : 0 k=1
problem under the PSV moo!el, exact rec;)very for . Rounding by Linear Programming (LP): Let r — &, which the ADM algorithm starts from a point g\ with qﬁ > VT f,(W): nonconvex function, M: smooth manifold.
Xo to have fp nonzeros, provided p > Q(n"log n). s the output of the ADM algorithm, it will converge to a stationary point q such that |g;| > 2V/6. . Nonconvex Problems as a Whole:
» Performs well empirically — succeeds for both the min || Yq| st. (r.q)=1. (6) » LP rounding succeeds: Solving (6) with r = q, w.h.p., will Phase retrieval, matrix/tensor completion, robust
PS5V and DL models, with p > Q(nlog n). " | output a solution g~ = ey. PCA, blind deconvolution, etc.
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