
Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions
Qing Qu, Ju Sun, and John Wright, Department of Electrical Engineering, Columbia University

Finding a Sparse Vector in a Linear Subspace?

Problem Statement:
I Given a sparse vector x0

embedded in an n dimensional
subspace S ⊆ Rp, provided any
basis of S, can we efficiently
recover x0? S

O

x0

I Equivalently, provided a matrix A ∈ R(p−n)×p whose
row span forms the subspace S, can we solve

min
x
‖x‖0 , s.t. Ax = 0, x 6= 0 ? (1)

Motivation:
I In contrast to the standard sparse recovery problem

min
x
‖x‖0 , s.t. Ax = b,

convex relaxation works nearly optimally for generic
design of A, the computational property of (1) is not
nearly as well understood.

I Variants of (1) has been studied in numerical linear
algebra, sparse PCA, blind source separation,
dictionary learning (DL), spectral estimation and
Pony’s Problem, and graphical model learning.

Existing Work

I `1/`∞ Recovery [Spielman et al.] and [Hand et al.]:
min

x
‖x‖1 , s.t. xi = 1, x ∈ S, 1 ≤ i ≤ p.

I Semi-Definite Programming (SDP) Relaxation:
min

X
‖X‖1 , s.t.

〈
A>A,X

〉
= 0, tr[X] = 1, X � 0.

I Sum-of-Squares (SOS) Relaxation [Barak et al.]:

Method Recovery Condition Computation Complexity
`1/`∞ θ ∈ O(1/

√
n) Ω(p2)

SDP θ ∈ O(1/
√

n) O(p3)
SOS p ≥ Ω(n2), θ ∈ O(1) high order poly(p)

Question 1: Is there a practical algorithm that prov-
ably recovers a sparse vector with θ � 1/

√
n from a

generic subspace S?

Contributions of this Work

I Proposed a simple ADM algorithm, addressed the
problem under the PSV model, exact recovery for
x0 to have θp nonzeros, provided p ≥ Ω(n4 log n).

I Performs well empirically – succeeds for both the
PSV and DL models, with p ≥ Ω(n log n).

Problem Formulation and Optimality Conditions

I Planted Sparse Vector (PSV) Model: A single sparse
vector x0 embedded in an otherwise random subspace:

S = span (x0,g1, . . . ,gn−1) ⊂ Rp ,

where gk ∼i.i.d. N (0, 1
pI), and x0 ∼i.i.d.

1√
θpBer(θ).

I Nonconvex `1/`2 Minimization Problem:
min

x
‖x‖1 , s.t. x ∈ S, ‖x‖2 = 1.

which is equivalent to
min

q
‖Yq‖1 , s.t. ‖q‖2 = 1, (2)

where Y ∈ Rp×n is an arbitrary orthonormal matrix whose
columns form a basis of S.

I Theorem (Global Optimality for `1/`2 Recovery):
Suppose S follows the PSV model, and q? be the optimum
to (2), with very high probability, we have Yq? = ξx0 for
some ξ 6= 0, provided

p ≥ Ω(n log n), and θ ≤ θ0.

Question 2: Can we efficiently solve (2) to global optimality?

Algorithm based on Alternating Direction Method (ADM)

I Alternating Minimization: Consider a relaxation of (2):

min
q,x

1
2
‖Yq− x‖2

2 + λ ‖x‖1 , s.t. ‖q‖2 = 1,

minimize the problem by alternating direction:

x(k+1) = arg min
x

1
2

∥∥∥Yq(k)− x
∥∥∥2

2
+ λ ‖x‖1 , (3)

q(k+1) = arg min
q

1
2

∥∥∥Yq− x(k+1)
∥∥∥2

2
s.t. ‖q‖2 = 1. (4)

Closed form solutions of (3), (4) lead to one ADM iteration

q(k+1) =
Y>Sλ

[
Yq(k)

]∥∥Y>Sλ

[
Yq(k)

]∥∥
2

, (5)

where Sλ[x ] = sign(x)(|x | − λ)+.
I Initialization Strategy: Given Z = [x0,g1, · · · ,gn−1], x0i 6= 0,

x0i = Θ
(

1/
√
θp
)
, gi ∼ N (0,1/p I) .

Idea: Because zi is biased towards the optimizer q? = e1,
use normalized rows of Z as initializations.
Remark: Analysis shows that it works for the orthogonalized
version and invariant to rotations as well.

I Rounding by Linear Programming (LP): Let r = q̄, which
is the output of the ADM algorithm,

min
q
‖Yq‖1 , s.t. 〈r,q〉 = 1. (6)

Theorem (Exact Recovery for the ADM Algorithm, PSV)

I Apply the ADM algorithm (5) with λ = 1/
√

p, using all rows
of Y as initializations for q(0) to produce q1, . . . ,qp. Solve the
LP rounding (6) with r = q1, . . . ,qp, to produce q̂1, . . . , q̂p.

I Set i? ∈ arg mini
∥∥Yq̂i

∥∥
0, with very high probability,

Yq̂i? = γx0 for some γ 6= 0, provided
p > Ω(n4 log n), and θ ≤ θ0.

A Sketch of Analysis
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Initializer q(0)

LP Rounding Succeeds

Stationary Point q̄

G(q) = |Q1(q)|
|q1| − ||Q2(q)||2

||q2||2 > C
θ2np

|Q1(q)|
||Q(q)||2 > 2

√
θNo Jump Away

from the Cap
Uniform Progress
by ADM Algorithm

Optimizer q⋆

Under the PSV model, let q =
[
q1,q>2

]>, G = [g1, · · · ,gn−1],
assume the orthonormal matrix

Y =

[
x0

‖x0‖2
| Px⊥0

G
(

G>Px⊥0
G
)−1/2

]
.

Define a random process over q ∈ Sn−1:

Q(q) =
1
p

p∑
k=1

ykSλ

[
q>yk

]
=
[
Q1(q),Q>2 (q)

]>
I Good initialization: One of initializers q(0)

i = yi, w.h.p.,∣∣∣〈q(0)
i ,e1

〉∣∣∣ ≥ 1/(4
√
θn)

I Uniform progress away from the equator: Because〈
Q(q)

‖Q(q)‖2
,e1

〉
> 〈q,e1〉 ⇔

|Q1(q)|
|q1|

− ‖Q2(q)‖2
‖q2‖2

> 0,

we show for any q ∈ Sn−1 with 1
4
√
θn
≤ |q1| ≤ 3

√
θ, w.h.p.,

G(q) =
|Q1(q)|
|q1|

− ‖Q2(q)‖2
‖q2‖2

>
C
θ2np

. (7)

I No jumps away from the cap: For all q with |q1| > 3
√
θ,

|Q1(q)| / ‖Q(q)‖2 > 2
√
θ. (8)

I Location of the stationary point: Steps above implies if
the ADM algorithm starts from a point q(0) with

∣∣∣q(0)
1

∣∣∣ > 1
4
√
θn

,

it will converge to a stationary point q̄ such that |q̄1| > 2
√
θ.

I LP rounding succeeds: Solving (6) with r = q̄, w.h.p., will
output a solution q? = e1.

Experimental Results

I Phase Transition on Synthetic Data: p = 5n log n.

I Exploratory Experiments on Faces:

Figure: Four sparse vectors extracted by the ADM algorithm for one
person in the Yale B database under different illuminations.

Figure: Four sparse vectors extracted by the ADM algorithm for 10
different persons in the Yale B database under normal illuminations.

Discussions

I More Application Ideas?
I Intriguing Experiments on Dictionary Learning:
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Efficient algorithms can also achieve linear sparsity
regime for the squared dictionary learning under
the Bernoulli-Gaussian model!

I Generalization: Can we develop general tools for

min
w

1
p

p∑
k=1

fk(w), s.t. w ∈M ?

fk(w): nonconvex function,M: smooth manifold.
I Nonconvex Problems as a Whole:

Phase retrieval, matrix/tensor completion, robust
PCA, blind deconvolution, etc.
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