Efficient Point-to-Subspace Query in ℓ^1 with Application to Robust Face Recognition

Robust Face Recognition Ju Sun, Yuqian Zhang, and John Wright COLUMBIA | ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Department of Electrical Engineering, Columbia University

Point-to-Subspace Query in ℓ^1

- ▶ Problem Statement: Given n linear subspaces S_1, \ldots, S_n of \mathbb{R}^D of dimension r and a query point $\mathbf{q} \in \mathbb{R}^D$, determine the nearest S_i to **q** in ℓ^1 norm.
- Motivation:
- Low-dimensional structures in visual data (e.g., lighting, poses)
- Structure query as recognition, ℓ^1 for robustness (to, e.g., occlusions, shadows)
- Efficiency: large D (e.g., # pixels) and large n (many subjects)

Existing Work

► Efficiency: Preprocessing and storage - lowpoly(D, r, n), Query – lowpoly($D, r, n^{o(1)}$)

	r = 0	r=1	$r \geq 2$
		✓ (Andoni et al, SODA'09)	? Heuristics (Basri'11, Jain'10)
ℓ^1	√ (Andoni'05) ? This work addresses D only		

- Sublinear time algorithm for point-to-hyperplane in ℓ^2 (and ℓ^1) unlikely (Williams'05)
- ightharpoonup General low-distortion low-dimensional embedding for ℓ^1 impossible (Brinkman'05)
- ▶ **Precursor**_©: For a single subspace, $\ell_D^1 \to \ell_1^{O(r \log r)}$ with distortion $O(r \log r)$ (Sohler and Woodruff, 11)
- ▶ Error-Correction in ℓ^1 : dim. reduction determined by density of error e (Candes and Tao, 04)

Our Algorithm and Main Results

- ► Cauchy distribution: $p(x) = \frac{1}{\pi} \frac{1}{1+x^2}$
- No finite mean or variance
- ℓ^1 Stable: for iid standard Cauchy RV's ϕ_1, \dots, ϕ_k , $\sum_{i=1}^{k} \phi_k \sim \|\Phi\|_{\ell^1} x$, for x standard Cauchy.
- ▶ Algorithm: Generate a random matrix $P \in \mathbb{R}^{d \times D}$ with iid Cauchy RV's ($d \ll D$)

Preprocessing: Compute the projections PS_1, \dots, PS_n **Test**: Compute the projection **Pq**, and compute its ℓ^1 distance to each of **P** S_i

► Theory: In short, Cauchy projection with large enough d preserves the identity of nearest subspace with nontrivial probability. In full details

Suppose we are given n linear subspaces $\{S_1, \dots, S_n\}$ of dimension r in \mathbb{R}^D and any query point **q**, and that the ℓ^1 distances of **q** to each of $\{S_1, \dots, S_n\}$ are $\xi_{1'} \leq \dots \leq \xi_{n'}$ when arranged in ascending order, with $\xi_{2'}/\xi_{1'} \ge \eta > 1$. For any fixed $\alpha < 1 - 1/\eta$, there exists $d \sim O(r \log n)^{1/\alpha}$ (assuming n > r), if $\mathbf{P} \in \mathbb{R}^{d \times D}$ is iid Cauchy, we have

$$\underset{i \in [n]}{\operatorname{arg\,min}} d_{\ell^1}\left(\mathbf{Pq}, \mathbf{P}\mathcal{S}_i\right) = \underset{i \in [n]}{\operatorname{arg\,min}} d_{\ell^1}\left(\mathbf{q}, \mathcal{S}_i\right)$$

with (nonzero) constant probability.

- Implications:
- d depends on the relative gap η , and not on D.
- \rightarrow d depends on $\log n$ growing nicely wrt. # subspaces.
- Independent trials can be taken to amplify the success probability. (Matter of low-dimensional ℓ^1 regressions!)
- ▶ In case of ties, first *k* nearest neighbors can instead be considered.

Empirical Results

► Extended Yale B Face Data: $D \sim 30,000$, n = 38, d = 9. Subset under moderate lighting (single projection)

Normalized distance gap for moderately/extremely illuminated samples.

Sketch of Analysis

Bounded expansion for the good subspace

Distance after projection can easily be upper bounded:

$$d_{\ell^1}(\mathsf{Pq},\mathsf{P}\mathcal{S}_\star) = \min_{\mathsf{h}\in\mathsf{P}\mathcal{S}_\star} \|\mathsf{Pq}-\mathsf{h}\|_1 \\ \leq \|\mathsf{Pq}-\mathsf{Pv}_\star\|_1 = \|\mathsf{P}(\mathsf{q}-\mathsf{v}_\star)\|_1.$$

Bounded expansion with nonzero constant probability: There exists numerical constant $c \in (0, 1)$ with the following property. If $\mathbf{w} \in \mathbb{R}^D$ be any fixed vector, and suppose that $\mathbf{P} \in \mathbb{R}^{d \times D}$ is a matrix with iid standard Cauchy entries. Then for any $\rho > 1$,

$$\mathbb{P}\left[\|\mathbf{Pw}\|_{1} > \rho \frac{2}{\pi} d \log d \|\mathbf{w}\|_{1}\right] < c + \frac{1-c}{\rho} < 1.$$

Idea of Proof

Behavior of Cauchy projection on point-to-subspace \(\ell^1 \) distance for different subspace configurations

- the distance to "good" subspace too much, and
- k the distances to "bad" subspace too much.

Bounded contraction for the bad subspaces

▶ Consider \forall **w** ∈ S_i ⊕ **q**, want to show $\|\mathbf{Pw}\|_1 \geq \gamma \|\mathbf{w}\|_1$ for some appropriate γ , then

$$d_{\ell^1}(\mathbf{Pq},\mathbf{P}\mathcal{S}_i) = \min_{\mathbf{v}\in\mathcal{S}_i}\|\mathbf{Pq}-\mathbf{Pv}\|_1 \geq \min_{\mathbf{v}\in\mathcal{S}_i}\|\mathbf{P}(\mathbf{q}-\mathbf{v})\|_1 \\ \geq \min_{\mathbf{v}\in\mathcal{S}_i}\gamma\|\mathbf{q}-\mathbf{v}\|_1 = \gamma d_{\ell^1}(\mathbf{q},\mathcal{S}_i),$$

▶ Discretization argument on restricted unit ℓ^1 sphere onto the augmented subspaces $\Gamma = \{\mathbf{w} \mid ||\mathbf{w}||_1 = 1\} \cap \tilde{\mathcal{S}}_i$. Points on the ε -net covered by the concentration results on lower tail.

Let $\mathbf{P} \in \mathbb{R}^{d \times D}$ be an iid Cauchy matrix. Then for any fixed vector $\mathbf{w} \in \mathbb{R}^D$ and $\alpha, \delta \in (0, 1)$,

$$\mathbb{P}\left[\left\|\mathbf{P}\mathbf{w}\right\|_{1} < (1-\alpha)\left(1-\delta\right)\frac{2}{\pi}d\log d\left\|\mathbf{w}\right\|_{1}\right] < d^{1-\alpha}\exp\left(-\frac{\delta^{2}}{2\pi}d^{\alpha}\right).$$

ightharpoonup Points on Γ but off the ε -net covered by triangular inequalty, which is founded on well-conditioned basis for ℓ^1 subspaces.