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Point-to-Subspace Query in Our Algorithm and Main Results Empirical Results
» Problem Statement: Given nlinear subspaces Sy, ..., Sy, of e » Extended Yale B Face Data: D ~ 30,000 ,n=38,d = 9.
RP of dimension r and a query point q € R”, determine the | | » Cauchy distribution: p(x) = 1 Subset under moderate lighting (single projection)

nearest S;to qin /' norm.

» Motivation:

» Low-dimensional structures in visual data (e.g., lighting, poses)
» Structure query as recognition, ¢! for robustness (to, e.g., occlusions,

» No finite mean or variance ! . . ,..

» (' Stable: for iid standard Cauchy RV’s ¢4, - - -, ¢x,
SOF i ~ ||®]1x, for x standard Cauchy.

shadows) | | . Algorithm: Generate a random matrix P € R9*2 with iid Cauchy RV’s (d < D)
» Efficiency: large D (e.g., # pixels) and large n (many subjects)

Preprocessing: Compute the projections PSy, - - -, PS,
Existing Work Test: Compute the projection Pq, and compute its ¢! distance to each of PS;
Effici P . q D » Theory: In short, Cauchy projection with large enough d preserves the identity of nearest W o@m & m E‘;:"i.] w15 &
> Elficiency. reprocessolqg and storage — lowpoly(D, r, n), subspace with nontrivial probability. In full details | |
Query — lowpoly(D, r, n°")) » Normalized distance gap for moderately/extremely
p— — o Suppose we are given n linear subspaces {Sy,---,S,} of dimension r in R” and any query illuminated samples.
/2 v (e.g., LSH) v (Andoni et al, SODA’'09) ? Heuristics (B;sri’ﬁ, Jain’10) point g and that the 61 distances of q to each of {817 S vSn} are 51’ S e S fn’ when arrang?d 9 '
(' v (Andoni'05) ? This work addresses D only in ascending order, with ¢o//&4 > 1 > 1. For any fixed o« < 1—1/1), there exists d ~ O (rlog n) /e
. . dXD o -
» o Sublinear time algorithm for point-to-hyperplane in ¢2 (and ¢1) (assuming n>r), 1P € R S I_Id Cauchy, we have | 0
unlikely (Williams’05) arg min ds (Pg,PS;) = arg min ds (q,S)) -
» o General low-distortion low-dimensional embedding for ¢! impossible T blek[),?]l' <l %
(Brinkman’05) with (nonzero) constant probabillity. E
. Precursor.: For a single subspace, ¢, — ¢7"'°9") with » Implications: $
distortion O(rlog r) (Sohler and Woodruff, 11) » d depends on the relative gap 7, and not on D.
_ N | | » d depends on log n — growing nicely wrt. # subspaces.
> Errml'-Correctlon In /': dim. reduction determined by » Independent trials can be taken to amplify the success probability. (Matter of low-dimensional ¢! regressions!) v . l . l . l
density of error e (Candes and Tao, 04) » In case of ties, first k nearest neighbors can instead be considered. * " ordered subjectindex

Sketch of Analysis

Bounded expansion for the subspace Idea of Proof Bounded contraction for the subspaces
» Distance after projection can easily be upper bounded: ~ Behavior of Cauchy projection on point-to-subspace ¢’ . Consider Vw € S; & g, want to show  ||Pw||; > ~||w]|{ for some appropriate v, then
Olg1 (Pq, PS*) _ hrg:l,g Hpq B hH1 distance for dlffSerent Subspacesconflguratlons dg1 (Pq, PS,) _ U;IQ HPCI o PVH1 > U;'Q Hp(q - V)H1
S HPCI — PV*H1 — HP(q — V*)H1- . Z Uyg /YHq o VH1 — Y d€1 (qul) ;

» Discretization argument on restricted unit ¢' sphere onto the augmented subspaces

» Bounded expansion with nonzero constant probability: 1
[ ={w | ||lw]|/{ =1} N S;. Points on the ¢-net covered by the concentration results on lower tall.

There exists numerical constant ¢ € (0, 1) with the follow-

ing property. If w € R be any fixed vector, and suppose 4 L Let P € R9%D be an iid Cauchy matrix. Then for any fixed vector w € RP and a6 € (0, 1),
that P € R9*? is a matrix with iid standard Cauchy entries. "l B T i 5 i 52
Then for any p > 1, - | P [|IPw|, < (1—a)(1—-6)=dlogd|wl|,| < d'"*exp ( 5 do‘) .
i 2 ) 1—cC e | ! n i n
P ||[Pwlli > p=dlog d [w||;| < c- <1
i n _ % » P does not increase the distance to “‘good” subspace too much, and

» Points on I but off the s-net covered by triangular inequalty, which is founded on well-conditioned
basis for ¢! subspaces.

» P does not shrink the distances to “bad” subspace too much.
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