Point-to-Subspace Query in ℓ

- Problem Statement: Given n linear subspaces $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of \mathbb{R}^{D} of dimension r and a query point $\mathbf{q} \in \mathbb{R}^{D}$, determine the nearest \mathcal{S}_{i} to \mathbf{q} in ℓ^{1} norm.

- Motivation

- Low-dimensional structures in visual data (e.g., lighting, poses) - Structure query as recognition, ℓ^{1} for robustness (to, e.g., occlusions, shadows)
Efficiency: large D (e.g., \# pixels) and large n (many subjects)

Existing Work

Efficiency: Preprocessing and storage - lowpoly (D, r, n), Query - lowpoly ($D, r, n^{o(1)}$)
$r=0$
$\ell^{2} \checkmark($ e.g., LSH $)$
\checkmark (Andoni et al, SODA'09) $\quad \begin{array}{r}r \geq 2 \\ \text { ? Heuristics (Bastri'11, Jair'10 }\end{array}$

- © Sublinear time algorithm for point-to-hyperplane in ℓ^{2} (and ℓ^{1}) unlikely (Williams'05)
\bullet General low-distortion low-dimensional embedding for ℓ^{1} impossible (Brinkman'05)
- Precursor $:$: For a single subspace, $\ell_{\square}^{1} \rightarrow \ell_{1}^{(\text {(rlogr) }}$ with distortion $O(r \log r)$ (Sohler and Woodruff, 11)
- Error-Correction in ℓ^{1} : dim. reduction determined by density of error e (Candes and Tao, 04)

Our Algorithm and Main Results

- Cauchy distribution: $p(x)=\frac{1}{\pi 1+x^{2}}$
- No finite mean or variance
- ℓ^{1} Stable: for iid standard Cauchy RV's ϕ $\sum_{i=1}^{k} \phi_{k} \sim\|\Phi\|_{\ell^{1}} x$, for x standard Cauchy.
- Algorithm: Generate a random matrix $\mathbf{P} \in \mathbb{R}^{d \times D}$ with iid Cauchy RV's $(d \ll D)$

$$
\text { Preprocessing: Compute the projections } \mathbf{P} \mathcal{S}_{1}, \cdots, \mathcal{P} \mathcal{S}_{r}
$$

$$
\text { Test: Compute the projection } \mathbf{P q} \text {, and compute its } \ell^{1} \text { distance to each of } \mathbf{P} \mathcal{S}_{i}
$$

- Theory: In short, Cauchy projection with large enough d preserves the identity of nearest subspace with nontrivial probability. In full details

Suppose we are given n linear subspaces $\left\{\mathcal{S}_{1}, \cdots, \mathcal{S}_{n}\right\}$ of dimension r in \mathbb{R}^{D} and any query point \mathbf{q}, and that the ℓ^{1} distances of \mathbf{q} to each of $\left\{\mathcal{S}_{1}, \cdots, \mathcal{S}_{n}\right\}$ are $\xi_{1} \leq \cdots \leq \xi_{n^{\prime}}$ when arranged in ascending order, with $\xi_{22} / \xi_{1} \geq \eta>1$. For any fixed $\alpha<1-1 / \eta$, there exists $d \sim O(r \log n)^{1 /}$ (assuming $n>r$), if $\mathbf{P} \in \mathbb{R}^{d \times D}$ is iid Cauchy, we have

$$
\underset{i \in[n]}{\arg \min } d_{\ell^{\prime}}\left(\mathbf{P q}, \mathbf{P} \mathcal{S}_{i}\right)=\underset{i \in[n]}{\arg \min } d_{\ell^{\prime}}\left(\mathbf{q}, \mathcal{S}_{i}\right)
$$

with (nonzero) constant probability

- Implications:
- d depends on the relative gap n, and not on D.
- d depends on $\log n-$ growing nicely wrt. \# subspaces.
- Independent trials can be taken to amplify the success probability. (Matter of low-dimensional ℓ^{1} regressions!
- In case of ties, first k nearest neighbors can instead be considered.

Empirical Results

- Extended Yale B Face Data: $D \sim 30,000, n=38, d=9$ Subset under moderate lighting (single projection)

- Normalized distance gap for moderately/extremely illuminated samples.

Bounded expansion for the good subspace

- Distance after projection can easily be upper bounded:

$$
d_{\ell^{\prime}}\left(\mathbf{P q}, \mathbf{P} \mathcal{S}_{\star}\right)=\min _{\mathbf{h} \in \mathcal{P}_{\star}}\|\mathbf{P q}-\mathbf{h}\|_{1}
$$

$$
\leq \stackrel{\mathbf{h} \in \mathbf{P} \mathcal{S}_{\star}}{\left\|\mathbf{P q}-\mathbf{P} \mathbf{v}_{\star}\right\|_{1}=\left\|\mathbf{P}\left(\mathbf{q}-\mathbf{v}_{\star}\right)\right\|_{1}}
$$

- Bounded expansion with nonzero constant probability: There exists numerical constant $c \in(0,1)$ with the following property. If $\mathbf{w} \in \mathbb{R}^{D}$ be any fixed vector, and suppose that $\mathbf{P} \in \mathbb{R}^{d \times D}$ is a matrix with iid standard Cauchy entries. Then for any $\rho>1$,

$$
\mathbb{P}\left[\|\mathbf{P w}\|_{1}>\rho \frac{2}{\pi} d \log d\|\mathbf{w}\|_{1}\right]<c+\frac{1-c}{\rho}<1 .
$$

Idea of Proof

- Behavior of Cauchy projection on point-to-subspace ℓ^{1} distance for different subspace configurations

- P does not increase the distance to "good" subspace too much, and - P does not shrink the distances to "bad" subspace too much.

Bounded contraction for the bad subspaces

- Consider $\forall \mathbf{w} \in \mathcal{S}_{i} \oplus \mathbf{q}$, want to show $\|\mathbf{P w}\|_{1} \geq \gamma\|\mathbf{w}\|_{1}$ for some appropriate γ, then $d_{\ell^{1}}\left(\mathbf{P q}, \mathbf{P} \mathcal{S}_{i^{\prime}}\right)=\min _{\mathbf{v} \in \mathcal{S}_{i}}\|\mathbf{P q}-\mathbf{P v}\|_{1} \geq \min _{\mathbf{v} \in \mathcal{S}_{i}}\|\mathbf{P}(\mathbf{q}-\mathbf{v})\|_{1}$ $\geq \min _{\mathbf{v} \in \mathcal{S}_{i}} \gamma\|\mathbf{q}-\mathbf{v}\|_{1}=\gamma d_{\ell^{1}}\left(\mathbf{q}, \mathcal{S}_{i}\right)$,
- Discretization argument on restricted unit ℓ^{1} sphere onto the augmented subspaces $\Gamma=\left\{\mathbf{w} \mid\|\mathbf{w}\|_{1}=1\right\} \cap \tilde{\mathcal{S}}_{j}$. Points on the ε-net covered by the concentration results on lower tail. Let $\mathbf{P} \in \mathbb{R}^{d \times D}$ be an iid Cauchy matrix. Then for any fixed vector $\mathbf{w} \in \mathbb{R}^{D}$ and $\alpha, \delta \in(0,1)$,

$$
\mathbb{P}\left[\|\mathbf{P w}\|_{1}<(1-\alpha)(1-\delta) \frac{2}{\pi} d \log d\|\mathbf{w}\|_{1}\right]<d^{1-\alpha} \exp \left(-\frac{\delta^{2}}{2 \pi} d^{\alpha}\right)
$$

- Points on 「 but off the ε-net covered by triangular inequalty, which is founded on well-conditioned basis for ℓ^{1} subspaces.

