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Efficient Point-to-Subspace Query in ¢! with Application to Robust Object
Instance Recognition*

Ju Sun®, Yuqgian Zhang', and John Wright!

Abstract. Motivated by vision tasks such as robust face and object recognition, we consider the following gen-
eral problem: given a collection of low-dimensional linear subspaces in a high-dimensional ambient
(image) space, and a query point (image), efficiently determine the nearest subspace to the query in
¢ distance. In contrast to the naive exhaustive search which entails large-scale linear programs, we
show that the computational burden can be cut down significantly by a simple two-stage algorithm:
(1) projecting the query and database subspaces into lower-dimensional space by random Cauchy
matrix and solving small-scale distance evaluations (linear programs) in the projection space to
locate the nearest candidates; (2) with few candidates upon independent repetition of (1), getting
back to the high-dimensional space and performing exhaustive search. To preserve the identity of
the nearest subspace with nontrivial probability, the projection dimension typically is a low-order
polynomial of the subspace dimension multiplied by a logarithm of the number of the subspaces
(Theorem 2.1). The reduced dimensionality and hence complexity render the proposed algorithm
particularly relevant to vision applications such as robust face and object instance recognition that
we investigate empirically.

Key words. ¢! point-to-subspace distance, nearest subspace search, Cauchy projection, face recognition, sub-
space modeling

AMS subject classifications. 68U10, 68T45, 68W20, 68110, 15B52

DOI. 10.1137/130936166

1. Introduction. Although visual data reside in very high-dimensional spaces, they of-
ten exhibit much lower-dimensional intrinsic structure. Modeling and exploiting this low-
dimensional structure is a central goal in computer vision, with impact on applications rang-
ing from low-level tasks such as signal acquisition and denoising to higher-level tasks such as
object detection and recognition.

In face and object recognition alone, many popular, effective techniques can be viewed as
searching for the low-dimensional model which best matches the query (test) image (see, e.g.,
[25, 3]). With each object O of interest we may associate a low-dimensional subset M C R,
which approximates the set of images of O that can be generated under different physical
conditions—say, varying pose or illumination. Given n objects O; and their corresponding
approximation subsets M;, the recognition problem becomes one of finding the nearest low-
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dimensional structure. To put it formally,

arg min d(q, M;),

7

where q € R” is the test image, and d(-,-) is some prescribed point-to-set distance function.

This paradigm is broad enough to encompass very classical work in face recognition [37]
and object instance recognition [32], as well as more recent developments [13, 7, 42]. In
situations when sufficient training data are available to accurately fit the M;, it can achieve
high recognition rates [39]. In applying it to a particular scenario, however, at least three
critical questions must be answered.

First, what is the most appropriate class of low-dimensional models M; ? The proper class
of models may depend on the properties of the object O, as well as the types of nuisance
variations that may be encountered. For example, variations in illumination may be well
captured using low-dimensional linear models [22, 5], whereas variations in pose or alignment
are highly nonlinear [18].

Second, how should we measure the distance d(q, M;) between q and M;? Typically, one
adopts a metric dist (-,-) on R” and then sets

d(q, M;) = min dist(q, V).

vEM;

Here, again, the appropriate metric dist (-, -) depends on our prior knowledge. For example, if
the observation q is known to be perturbed by independent and identically distributed (i.i.d.)
Gaussian noise, minimizing the metric induced by the 2 norm dist (q, v) = ||q — v||2 yields a
maximum likelihood estimator. However, in practice other norms may be more appropriate:
for example, in situations where the data may have errors due to occlusions, shadows, or
specularities, the /! norm is a more robust alternative [42].

Finally, given an appropriate model and error distance, how can we efficiently determine
the nearest model to a given input query? That is to say, we would like to solve

(1.1) argmin min dist (q, v)
i€{l,..,n} VEM:

using computational resources that depend as gracefully as possible on the ambient dimension
D (typically the number of pixels in the image) and the number of models n. In practical
applications, both of these quantities could be very large.

This paper. In this paper, we consider the case when the low-dimensional models M;
are linear subspaces. As mentioned above, subspace models are well justified for modeling
illumination variations [22, 5] (say, in near-frontal face recognition) and also form a basic
building block for modeling and computing with more general, nonlinear sets [35, 34].

Our methodology pertains to distances dist(q,v) induced by the /7 norm ||q — v||,, with
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p € (0,2].1 We focus here on the /! norm, ||q — v|j1 = 3, |¢ — vi|. The ¢! norm is a natural
and well-justified choice when the test image contains pixels that do not fit the model—say,
due to moderate occlusions, cast shadows, or specularities [42]. For p € (0, 2], the % norm
with p = 1 strikes a unique compromise between computational tractability (convexity) and
robustness to gross errors.

With this choice of models and distance, at recognition time we are left with the following
computational task.

Problem 1.1. Given n linear subspaces S1,...,S, of dimension r and a query point q, all
in RP, determine the nearest S; to q in the ¢* norm.

This problem has a straightforward solution: solve a sequence of n ¢! regression problems,

1.2 i —
(1.2) 5n€g1i||q vll1,

and choose the ¢ with the smallest optimal objective value. The total cost is O(n - Ty1 (D, r)),
where Ty (D,r) is the time required to solve the linear program (1.2). For example, for
interior point methods [8], we have Tj1(D,r) = O(D3%).2 There exist more scalable first-
order methods [20, 6, 45, 43], which improve on the dependence on D at the expense of
higher iteration complexity. The best known complexity guarantees for each of these methods
are again superlinear in D, although linear runtimes may be achievable when the residual
q — v, is very sparse [19] or the problem is otherwise well structured [1]. Even in the best
case, however, the aforementioned algorithms have complexity €(nD).> When both terms
are large, this dependence is prohibitive: Although Problem 1.1 is simple to state and easy
to solve in polynomial time, achieving real-time performance or scaling massive databases of
objects appears to require a more careful study.

In this paper, we present a very simple, practical approach to Problem 1.1, with much
improved computational complexity and reasonably strong theoretical guarantees. Rather
than working directly in the high-dimensional space R, we randomly embed the query q and
subspaces S; into RY, with d < D. The random embedding is given by a d x D matrix P
whose entries are i.i.d. standard Cauchy random variables. That is to say, instead of solving
(1.2), we solve

! Mathematically lIxll, = >, |:ci|p)1/p defines a valid norm only when p > 1, which in turn induces valid
metric [|x —y|[ . Forp € (0,1), though [-||,, is not a valid norm, one can verify that |[x[[; = >, |z:|” indeed also
induces a valid metric, i.e., for all x,y,z € R” ||x — ylib >0, [x—y[f =0=x=y, [x-yl; = lly — [},
and also the triangular inequality holds: [x —z||? < [lx — y[|? + [ly — z||’. These latter cases may turn out to
be empirically interesting, as the ££ “norm” for p € (0, 1) is actually a sharper proxy for the £° counting norm
(which is the main count for robustness to errors, as discussed in subsequent parts) than the £' norm. Since
stable distributions exist for all [|-[|, (p € (0,2]), our current algorithm and analysis methodology is likely to
extend to all p € (0, 2].

2We have suppressed the dependency on other factors, such as log% (where e denotes the target precision)
and 7 to make things concise, because our main interest is mostly in the effect of D on the complexity. Lower
order is possible for our specific case by some careful implementation; see, e.g., section 11.8.2 on page 617 of [8].
See also our discussion of running time in section 4.5.

30n a more technical level, when the S; are fit to sample data, the aforementioned first-order methods may
require tuning for optimal performance.
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(1.3) min ||Pq — Pv||;.
vES;

We prove that if the embedded dimension d is sufficiently large, say d = poly(rlogn) (i.e.,
d is bounded by some polynomial of rlogn), then with constant probability the model S;
obtained from (1.3) is the same as the one obtained from the original optimization (1.2).

The required dimension d does not depend in any way on the ambient dimension D and
is often significantly smaller, e.g., d = 25 vs. D = 32,000 for one typical example of face
recognition. The resulting (small) ¢! regression problems can be solved very efficiently using
customized interior point solvers (see, e.g., [31]). These methods are numerically reliable and
can yield a speedup of several folds over the standard approach relying on solving (1.2).

The price paid for this improved computational profile is a small increase in the probability
of failure of the recognition algorithm, due to the use of a randomized embedding. Our theory
quantifies how large d needs to be to render this probability of error under control. Repeated
trials with independent projections P can then be used to make the probability of failure as
small as desired. Because ¢! regression is so much cheaper in the low-dimensional space R?
than in the original space R” provided d < D, these repeated trials are affordable.

The end result is a simple, practical algorithm that guarantees maintaining the good prop-
erties of ¢! regression, with substantially improved computational complexity. We demonstrate
this on model problems in subspace-based face and object instance recognition. In addition
to improved complexity in theory, we observe remarkable improvements on real data exam-
ples, suggesting that point-to-subspace query in £! could become a practical strategy (or basic
building block) for face and object recognition tasks involving large databases, or involving
small databases under hard time constraints.

Relationship to existing work. Problem 1.1 is an example of a subspace search problem.
For 0-dimensional affine subspaces in £2 (i.e., points), this problem coincides with the nearest
neighbor problem. Its approximate version can be solved in time sublinear in n, the number
of points, using randomized techniques such as locality sensitive hashing [16]. When the
dimension r is larger than zero, the problem becomes significantly more challenging. For the
case of r = 1, sublinear time algorithms exist, although they are more complicated [2].

Recently two groups have proposed approaches to tackling larger r. Basri, Hassner, and
Zelnik-Manor [4] lift subspaces into a higher-dimensional vector space (identifying the subspace
with its D x D orthoprojector) and then apply point-based near neighbor search. Jain,
Vijayanarasimhan, and Grauman give several random hash functions for the case when the
S; are hyperplanes [26]. Both of these approaches pertain to ¢? only. Both perform well on
numerical examples, but have limitations in theory, as neither is known to yield an algorithm
with provably sublinear complexity for all inputs. Results in theoretical computer science
suggest that these limitations may be intrinsic to the problem: a sublinear time algorithm for
approximate nearest hyperplane search would refute the strong version of the “exponential
time hypothesis,” which conjectures that general boolean satisfiability problems cannot be
solved in time O(2°") for any ¢ < 1 [40].

The above algorithms exploit special properties of the 2 version of Problem 1.1 and do
not apply to its ¢! variant. However, the ¢! variant retains the aforementioned difficulties,
suggesting that an algorithm for ¢! near subspace search with sublinear dependence on n is



EFFICIENT POINT-TO-SUBSPACE QUERY IN ¢£* 2109

unlikely as well.* This motivates us to focus on ameliorating the dependence on D. Our
approach is very simple and very natural: Cauchy projections are chosen because the Cauchy
family is the unique ¢'-stable distribution, i.e., Cauchy projection of any given vector re-
mains i.i.d. Cauchy (see (3.1) and Appendix A for details), a property which has been widely
exploited in previous algorithmic work [16, 29, 36].

However, on a technical level, it is not obvious that Cauchy embedding should succeed
for this problem. The Cauchy is a heavy tailed distribution, and because of this it does not
yield embeddings that very tightly preserve distances between points, as in the Johnson-
Lindenstrauss lemma® (JL lemma; see [27, 15]). In fact, for ¢!, there exist lower bounds
showing that certain point sets in ¢! cannot be embedded in significantly lower-dimensional
spaces without incurring nonnegligible distortion [9].° For a single subspace, embedding results
exist, most notably due to Sohler and Woodruff [36], but the distortion incurred is so large
as to render them inapplicable to Problem 1.1. Nevertheless, several elegant technical ideas
in the proof of [36] turn out to be useful for analyzing Problem 1.1 as well.

The problem studied here is also related to recent work on sparse modeling and sparse
error correction. Indeed, one of the strongest technical motivations for using the ¢ norm is its
provable good performance in sparse error correction [11, 41]. These results give conditions
under which it is possible to recover a vector v from grossly corrupted observation

q=Vv-+te,

with v € § and the sparse error e unknown. These results are quite strong: they imply exact
recovery, even if the error e has constant fractions of nonzero entries, of arbitrary magnitude.
For example, [11] proves that under technical conditions, /! minimization

(1.4) min |lef|; such that q—eeS

exactly recovers e when § is a linear subspace. Wright and Ma [41] present a similar theory
for the case when § is a union of linear subspaces solved by a variant of optimization in (1.4).

On the other hand, exact recovery may be stronger than what is needed for recognition.
For recognition, as formulated in this work, we need only know which subspace minimizes
the distance d(q,S;)—we do not need to precisely estimate the difference vector itself. The
distinction is important: while [42] shows that significant dimensionality reduction is possible
if there are no gross errors e, when errors are present, the cardinality of the error vector gives
a hard lower bound on the number of observations required for correct recovery. In contrast,
for the simpler problem of finding the nearest model, it is possible to give an algorithm that
uses very small d and is agnostic to the properties of q and S1,...,S,.

4This could be possible if we are willing to accept time and space complexity exponential in 7 or D, a la
30].
| ]5One version of the lemma (taken from [15]) states the following: for any £ € (0,1) and any n € N, let
k € N satisfy &k > 4 (52/2 — 53/3)71 logn. Then, for any set V of n points in R?, there is a map f : R? — R*
such that for all u,v € V, (1 —¢)|ju—v|]*> < [|f (u) — f (v)||” < (1 +¢) ||lu — v||*>. Note in particular that k is
independent of the ambient dimension d and depends on n only through its logarithm.

In particular, it is shown in [9] that to keep the distortion within e, it is necessary that the projection

dimension be n9(1/52)'
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Solving the component regression problem in projected space is also reminiscent of research
on approximate ¢! regression (see, e.g., [36, 12]). The purpose in that line of work is to
efficiently obtain an e-approximate solution to a single ¢! regression: any x such that

ly = Ax[lp < (1 +e)min |y — Az, .

Our purpose here is quite different: for a bunch of ¢! regression problems, instead of being
concerned with the quality of solving each individual problem, one need only ensure that
the regression problem with the smallest objective value remains so after approximation.
Moreover, state-of-the-art coreset-based approximation algorithms for ¢! regression such as
those in [14, 36, 12] depend heavily on obtaining some importance sampling measure (e.g.,
' leverage score of an ¢! well-conditioned basis in [12]), which in turn depends on A and y
simultaneously. In a database-query model that is common in recognition tasks, this compli-
cated dependency directs a lot of computation to query time. By comparison, a considerable
portion of computation (e.g., projection of the subspaces) in our framework can be performed
during training, rendering the framework attractive when the recognition is under hard time
constraints.

Notation. We define the most commonly used notations here. dy (-,-) is the ¢! distance
of a point to a subspace, i.e., dp (q,S) = minyes ||q — v||,. For any k € N, [k] ={1,... Kk},
and =4 denotes equality in distribution. Other notations will be defined within the text.

2. Our algorithm and main results. The flow of our algorithm is summarized as follows.
Our main theoretical result states that if d is chosen appropriately, with at least constant
probability, the subspace S;, selected will be the original closest subspace S.

Input: n subspaces Si,...,S, of dimension r and query gq
Output: Identity of the closest subspace S. to q

Preprocessing: Generate P € R?™P with i.i.d. Cauchy random variables (d < D), and compute
the projections PS, ..., PS,. Repeat for independent repetitions of P.

Candidate Search: Compute the projection Pq, and compute its ¢' distance to each of PS;.
Repeat for several versions of P, and locate nearest candidates.

Refined Scanning: Scan the candidates in RD, and return S,.

Theorem 2.1. Suppose we are given n linear subspaces {Sy,...,S,} of dimension r in RP
and any query point q, and suppose dp (q,S1) < dp (q,S;) /n for alli € [n]\ {1} and some
n > 1. Then, for any fired « < 1 — 1/n, there exists d = O[(rlogn)l/a] (assuming n > r)
such that if P € R™P s i.4.d. Cauchy, we have

(2.1) argmindpn (Pq,PS;) =1

i€[n]

with (nonzero) constant probability.

The choice of the first subspace as the nearest is only for notational and expository con-
venience. Also we write arg min;e, dp (Pq,PS;) = 1 to mean that the first subspace is the
nearest unambiguously, i.e., the set of minimizers is a singleton (this comment applies to sim-
ilar situations below). The condition in Theorem 2.1 depends on several factors. Perhaps the
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most interesting is the relative gap n between the closest subspace distance and the second
closest subspace distance. Notice that 7 € [1,00) and that the exponent 1/a becomes large
as 7 approaches one. This suggests that our dimensionality reduction will be most effective
when the relative gap is nonnegligible. For example, when n = 2 the required dimension is
proportional to 72,

Notice also that d depends on the number of models n only through its logarithm. This
rather weak dependence is a strong point, and, interestingly, mirrors the JL lemma for dimen-
sionality reduction in £2, even though JL-style embeddings are impossible for ¢*.

Before stating our overall algorithm, we suggest two additional practical implications of
Theorem 2.1. First, Theorem 2.1 guarantees success only with constant probability. This
probability is easily amplified by taking 7' independent trials. Because the probability of
failure drops exponentially in 7T, it usually suffices to keep T' rather small. Each of these T’
trials generates one or more candidate subspaces S;. We can then perform ¢! regression in
RP to determine which of these candidates is actually nearest to the query. Note that it may
also be possible to perform this second step in R, where d < d’ < D.

Second, the importance of the gap n suggests another means of controlling the resources
demanded by the algorithm. Namely, if we have reason to believe that n will be especially
small (i.e., approaching one), we may instead set d according to the gap between &/ and
&, for some k' > 2, where for any i € [n], & denotes the ¢! distance of the query q to its
ith nearest subspace. With this choice, Theorem 2.1 implies that with constant probability
the desired subspace is amongst the & — 1 nearest to the query. Again, all of these k' — 1
subspaces need to be retained for further examination. However, if ¥/ < n, this is still a
significant saving over the standard approach.

We complement our main result above with a result on the lower bound of the projecting
dimension d, which basically says any randomized embedding that is oblivious to the query
and subspaces has the target dimension dictated by logn,r and the reciprocal of log nmin,
where 7,y is a nominal relative distance gap (see below), in order to preserve the identity of
the nearest subspace with nonnegligible probability.

Theorem 2.2. Fiz any r,n € N,nyin € (1,00) and v € (1/n,1). Let d € N satisfy the
following: for all D > r, there exists a distribution p over R¥™P such that for all sets
{S1,...,8,} of r-dimensional subspaces and point q in RP with the property dp (q,S1) <
dpr (4,8;) /Mmin for all i € [n], one has

(2.2) Pp~, |argmindpy (Pq,PS;)) =1| > 7.
1€[n]
Then d > maX(C’lm log ﬁ logn — C’g@, r) for some numerical constants Cq,Cs.

We restrict the probability to be greater than 1/n to rule out any case worse than random
guessing. The proof is provided in Appendix F. We note that there is a significant gap between
the upper bound in Theorem 2.1 and the lower bound in Theorem 2.2. In particular, it is
not clear whether 7,;, should enter the bound in its current form, which is extremely bad for
small 7yin, or resemble our lower bound, which is significantly milder. Resolving these issues
remains an open problem.
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3. A sketch of the analysis. In this section, we sketch the analysis leading to Theorem
2.1. The basic rationale for using Cauchy projection is that the standard Cauchy is a stable
distribution for the ¢! norm: if v € R is any fixed vector, and P € R**P is a matrix with
i.i.d. Cauchy entries, then the vector

(3.1) Pv =4 |v|i % z,

where z is again an i.i.d. Cauchy vector. In fact, the Cauchy family is also the only stable
distribution for the #! norm (see Appendix A for more details). So, |Pvl|j1 =4 ||v]1]z]1 =
[vll1>_; |2i]- The random variables |z;| are i.i.d. half-Cauchy, with PDF

2 1

2 = — if x>
(3 ) f’HC($) 7T1+$2 1 33‘_0,

and fyc(x) =0 for z < 0.

In point-to-subspace query, we need to understand how P acts on many vectors v simul-
taneously, including the query q and all of the subspaces Sy,...,S,. Here, we encounter a
challenge: although the Cauchy is unambiguously the correct distribution for estimating ¢!
norms, it is rather ill-behaved: its mean and variance do not exist, and the sample averages
13", |zi| do not obey the classical central limit theorem.

Figure 1 shows how this behavior affects the point-to-subspace distance d, (q,S). The
figure shows a histogram of the random variable ) = dn (Pq, PS), over randomly generated
Cauchy matrices P, for two different configurations of query q and subspace S. Two properties
are especially noteworthy. First, the upper tail of the distribution can be quite heavy: with
nonnegligible probability, 1 may significantly exceed its median. On the other hand, the lower
tail is much better behaved: with very high probability, ¥ is not significantly smaller than
its median. This inhomogeneous behavior (in particular, the heavy upper tail) precludes very
tight distance-preserving embeddings using the Cauchy. However, our goal is not to find an
embedding of the data, per se, but rather to find the nearest subspace, Sx, to the query. In

Figure 1. Statistics of £* distance ratios (after vs. before) by random projections over 10000 trials. The
subspaces are randomly oriented (1st column) and azis-aligned (2nd column), respectively. Here r = 10, D =
10000, d = 35, and dp (¢,S) = 1.
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fact, for nearest subspace search, this inhomogeneous behavior is much less of an obstacle. To
guarantee to find Sy, we need to ensure qualitatively that

(i) P does not increase the distance from q to S, too much, and

(ii) P does not shrink the distance from q to any of the other subspaces S;

too much.

The first property, (i), holds with constant probability: although the tail of 1 is heavy, with
probability at least 1/2, ¢ < median(¢)). For the second event, (ii), P needs to be well
behaved on n — 1 subspaces simultaneously. Notice, however, that for the bad subspaces S;,
the lower tail in Figure 1 is most important. If projection happens to significantly increase
the distance between q and S;, this will not cause an error (and may even help, in the sense
that amplifying the distance to a “bad” subspace renders the chances of the “good” subspace
being misdetected (hence failure) less likely). Since the lower tail is sharp, we can guarantee
that if d is chosen correctly, Pq will not be significantly closer to any of the PS;.

Below we describe some of the technical manipulations needed to carry this argument
through rigorously and state key lemmas for each part. Section 3.1 elaborates on property
(i), while section 3.2 describes the arguments needed to establish property (ii). Theorem 2.1
follows directly from the results in sections 3.1 and 3.2. This argument, as well as proofs of
several routine or technical lemmas, are deferred to the appendices.

3.1. Bounded expansion for the good subspace. Let v, € S, be a closest point to q in
the ¢! norm before projection:

v« € arg min [lq — vz
*

Such a point v, may not be unique, but it always exists. After projection, Pv, might no
longer be the closest point to Pq. However, the distance |[Pq — Pv,||; does upper bound the
distance from Pq to PS,:
dp (Pq,PS,) = min |[Pq—hf) < [[Pq—Pv.i = |[P(q—vil:.
hePS,

Hence, it is enough to show that P preserves the norm of the particular vector w = q — vy.
We use the following lemma for this purpose, the proof of which can be found in Appendix B.

Lemma 3.1. There exists a numerical constant ¢ € (0,1) with the following property. If

w € RP is any fized vector, 2 < d € N, and supposing that P € R™P is a matriz with i.i.d.
standard Cauchy entries, then

2
(3.3) P{||Pw]: < ;dlogd”w”l > c.

3.2. Bounded contraction for the bad subspaces. For the “bad” subspaces So,...,Sy,,
our task is more complicated, since we have to show that under projection P, no point in S;
comes close to q. In fact, we will show something slightly stronger: for appropriate v, with
high probability the following holds for any :

(3.4) VweS; @span(q), [[Pw|i > v|wli.
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Above, @ denotes the direct sum of subspaces, so S; =S5 ® span(q) is the linear span of S;
and the query together. Since for any v € S;, q — v € §;, whenever (3.4) holds, we have

dp (Pq,PS;) = min [Pq—Pvll; = min |[P(q—v)l
(3.5) 2 minqllg —vli = vda (q,5i),

and the distance to any “bad” subspace S; contracts by at most a factor of ~.
To show (3.4), we use a discretization argument. Let I' denote the intersection of the unit
¢! “sphere” with the expanded subspace S;:

F={w||w[i=1}nS..

Recall that for any set I', an e-net is a subset N; C I' such that for every w € T, [[w —w/||; <€
for some w' € N;. Standard arguments (see Lemma 3.18 on page 63 of [28]) show that for
any € > 0, there exists an e-net N; for ' of size at most (3/¢)" L.
Consider the following two events:

(il.a) mingey [|[PW|[1 > 3, and

(ii.b) for all w € S;, |Pwl1 < L|wl;.
When both hold, we have for any w € I’ (with associated closest point w’ € N;)
(3.6) [Pwly > [[Pw' +P(w —w)[ly > [Pw'[l1 — [P(w—w)[li > 58— Le

Moreover, since for any w € S;, w/||w||; € T, we have that
YwesS, [[Pwli> (8- Le)llwl,

and we may set v =  — Le. So, it is left to establish items (ii.a) and (ii.b) above.
Establishing (ii.a). We use the following tail bound.
Lemma 3.2 (concentration in lower tail). Let P € R¥>P be an i.i.d. Cauchy matriz. Then,
for any fized vector w € R and o, 6 € (0,1),

2 62
(3.7 P||Pwl]; < (1—a)(1l-9) ;dlogd”w”l} < d"%exp <—%do‘> .

In hindsight, the exponent « in the power gives rise to the exponential factor in our bound
for d in Theorem 2.1. Fortunately, we are able to establish a concrete lower bound on the
probability, which shows that this estimate gives the optimal power. Detailed discussions and
proofs are deferred to Appendix C.

This bound is sharp enough to allow us to simultaneously lower bound ||[Pw’||; over all
w € N;. Set

Bas = (1 = a)(1 =) 2dlog d,

and let Eyer,i denote the event that there exists w' € N; with ||[Pw'|[1 < Bas]|wW'|1:

(3.8) P[Enets] < |Nild"®exp (—%da) .
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Establishing (ii.b). In bounding the Lipschitz constant L in (ii.b), we have to cope with the
heavy tails of the Cauchy, and simple arguments like the above argument for /3 are insufficient.
Rather, we borrow an elegant argument of Sohler and Woodruff [36]. The rough idea is
to work with a certain special basis for S;, which can be considered an ¢* analogue of an
orthonormal basis. Just as an orthonormal basis preserves the 2 norm, an ¢' well-conditioned
basis approximately preserves the ¢! norm, up to distortion (r + 1). The argument then
controls the action of P on the elements of this basis. Due to space limitations, we defer
further discussion of this idea to Appendix D and instead simply state the resulting bound.

Lemma 3.3. Let P € R¥™P be an i.i.d. Cauchy matriz, and let S be a fized subspace of
dimension r + 1. Set L = supyeg\ oy [PWl[1/lWl[1. Then, for any B >0, we have

(3.9) PIL>tr+1) < 2D 2, B
B mt

The proof of Theorem 2.1 follows from Lemmas 3.1-3.3 above by choosing appropriate
values of the parameters B, t, §, and e. We give the detailed calculation in Appendix E.

Remark 3.4. We do not allow n =1 in Theorem 2.1, corresponding to ties in the nearest
subspaces. In this special case, it seems natural that one instead ask the dimension reduction
to preserve any one of the nearest subspaces; the problem actually becomes easier. To see
this, one can fix one of the nearest subspaces as the “good” one, ignore the rest of the nearest,
and treat all the rest as “bad” subspaces. Now the new relative distance gap Neffective > 1,
and the number of distances we want to control becomes smaller than the number of subspaces
present; hence the problem is actually easier as compared to a gemeric problem setting as in
Theorem 2.1 with the same parameters (except for the slightly slacked target, as stated above).

4. Experiments. We present three experiments to corroborate our theoretical results and
demonstrate their particular relevance to subspace-based robust instance recognition.

4.1. Note on implementation.

Projection matrices and subspaces. Theorem 2.1 is for any fixed set of subspaces and any
fixed query point. Of course, if we fix the projection matrix P and consider many different
query points, the success or failure of approximation to each query will be dependent. This
suggests sampling a new matrix P for each new query, which would then require that we
reproject each of the subspaces {S;}. In practice, it is more efficient to maintain a pool of
k Cauchy projection matrices’ {P;} and store P;S; for each i and j. During testing, we
randomly sample a combination of N, (“rep” for repetition) matrices and corresponding
projected subspaces and also apply these projections to the query. This sampling strategy
from a finite pool does not generate independent projections for different query points, but it
allows economic implementation and empirically still yields an impressive performance. We
will specify the values for k and N,., for different experiments.

Solvers for (' regression. We perform high-dimensional nearest subspace (NS) search in ¢!
(HDL1) as a baseline. Considering the scale of ¢! regression in this case, we employ an aug-
mented Lagrange method (ALM) numerical solver [44] whenever the recognition performance

"The standard Cauchy projection matrix P can be generated as A./B, where both A and B are i.i.d.
standard normals and “./” denotes elementwise matrix division.
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is not noticeably affected (the case on extended Yale B below); otherwise we employ the more
accurate interior point method (IPM) solvers [10] (for the synthesized experiment and ALOTI).
All the instances of ¢! regression in the projected low dimensions are handled by IPM solvers.

4.2. Experiments with synthesized data. We independently generated n = 100 random
subspaces in R0 (ie.. D = 10000), each of which is 5-dimensional (i.e., r = 5). Each
subspace is generated as the column span of a D x r i.i.d. standard normal matrix. We also
prepared a pool of £ = 100 Cauchy matrices of dimension d x D, where d takes values in
{10, 30,50, 70,90} .

To verify our theory (Theorem 2.1), we randomly picked one subspace and generated a
sample y = Bx, where B is one orthonormal basis for the subspace and x contains i.i.d.
standard normal entries. To induce a reasonable distance gap, and also simulate some sparse
errors, we divided y by the magnitude of its largest entries and added errors that are uniformly
distributed in [—1,1] to a #-fraction of y’s entries; i.e., we got y =y + eyp. We varied 0 from
0.05 with 0.3, with 0.05 as step size. Growth in fraction of corruption diminishes the distance
gap 7, as evidenced from the legend of the left subfigure in Figure 2. To estimate the success
probability of low-dimensional regression to retrieve the nearest (in principle not necessarily
the originating) subspace, in each setting we exhausted our pool of projection matrices and
obtained the empirical success rate. The left subfigure of Figure 2 reports the results. Note
that here r logn ~ 23; when the distance gap is not so small, say n > 2, d = 30 actually enjoys
at least a 50% chance of preserving the NS. Also, to reasonably get the same level of success
probability, small distance gaps evidently entail large projection dimensions.
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Figure 2. Left: Probabilities of preserving the NSs by different projection dimensions for a fized sample
corrupted by different levels of additive errors. Right: Fraction of samples that still identify their NS after
random projections of different dimensions.

To emulate visual recognition scenarios such as we will do in the next experiments, we
independently randomly generated 500 query points similar to ¥ and also varied 6 similarly
as above to induce different distance gaps. To keep things simple, for each query we ran-
domly picked up one projection from the pool and omitted repetitions and refined scanning
altogether. The success probability is now defined as the fraction of samples that successfully
identify their respective NSs in randomly chosen low-dimensional space. The right subfigure
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in Figure 2 gives such results. Again, even on this much trimmed version of our algorithm,
d = 30 helps half of the samples find their NS when the corruption level is below 0.20!

4.3. Robust face recognition on extended Yale B. Under certain physical assumptions,
images of one person taken with a fixed pose and varying illumination can be well approx-
imated using a nine-dimensional linear subspace [5]. Because physical phenomena such as
occlusions and specularities, as well as physical properties such as nonconvexity [46], may
cause violation of the low-dimensional linear model, we formulate the recognition problem as
one of finding the closest subspace to q in ¢* norm [42].8

The cropped version of the extended Yale B (EYB) face dataset [22] contains cropped,
well-aligned frontal face images (168 x 192) of 38 subjects under 64 illuminations (2, 432 images
in total, the 18 corrupted during acquisition not used here). For each subject, we randomly
divided the images into two halves, leading to 1205 training images and 1209 test images. To
better illustrate the behavior of our algorithm, we strategically divided the test set into two
subsets: moderately illuminated (909, Subset M) and extremely illuminated (300, Subset E).
The division is based on the light source direction (w.r.t. the camera axis): images taken with
either azimuth angle greater than 90° or elevation angle greater than 60° would be classified
as extremely illuminated.? Since all faces are supposed to be known, hence the closed-world
assumption holds true in this setting.

Recognition with original images. Figure 3 presents the evolution of recognition rate on
Subset M as the projection dimension (d) grows with only one repetition of the projection
(Nyep = 1). We took the subspace dimension to be nine (r = 9) as conventional. Our
experiment shows that the HDL1 achieves perfect recognition (100%) on this subset, implying
that recognition in this subset corresponds perfectly to NS search in £!. So Figure 3 actually
represents the evolution of “average” success probability for one repetition over the subset.
Suppose the distance gap 7 is significant such that 1/ac — 1 (recall « is near 1 — 1/n in
Theorem 2.1); our theorem suggests that one needs to set roughly d = rlogn = 9xlog 38 ~ 33
to achieve a constant probability of success. Our result is consistent with this theoretical
prediction, and the probability is already stable above 0.9 for d > 25. With three repetitions
and d = 25, the overall recognition rate is 99.56% (four errors out of 909), nearly perfect.
Figure 4 presents the failing cases. They either contain significant artifacts or approach the
extremely illuminated cases, the failing mechanism and remedy of which are explained below.

For extremely illuminated face images, the ¢! distance gap between the first and second
NSs is much less significant (one example is shown in Figure 5). Our theory suggests d should
be increased to compensate for the weak gap (because the exponent 1/« becomes significant).
Our experimental results confirm this prediction. Specifically, for » = 15 (we took this to be
higher than 9 to account for the great variation due to extreme illuminations in this case),
the HDL1 achieves 94.7% accuracy, while our method achieves only 79.3% when d = 25 and

8In other words, we formulate the problem as ¢! NS search. This is different from the idea of sparse
representation in SRC [42] for face recognition. Since our focus here is not to propose a new or optimal
face recognition algorithm (although the #* NS method happens to be new for the task), we prefer to save
detailed discussions in this line for future work. Nevertheless, our preliminary results indeed suggest ¢! NS is
as competitive as SRC for the popular EYB face recognition benchmark we have used here.

“Note that this division does not closely match in any way the four subset divisions coming with the
database, as described in [22].
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Figure 3. Recognition rate vs. projection dimension (d) with one repetition on Subset M face images of
EYB. The recognition rate stays stable above 90% with d > 25. The high-dimensional NS in £* achieves perfect
(100%) recognition. Note that the ambient dimension in this case is D = 168 x 192 = 32256.

of our method on Subset M of EYB.
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Figure 5. Samples of moderately/extremely illuminated face images and their 0+ distances to other subject
subspaces. The subjects have been ordered in ascending order of ¢* distance from the sample, and the distances
are normalized such that the first distance is 1. Note that for the moderately illuminated sample, a distance gap
of about 4.8 is observed, while this is only about 1.8 for the extremely illuminated sample.

Npack = 5 (Npgek is the number of back-research, i.e., “refined scanning” as in the algorithm
description, in high dimensions). The recognition rate is boosted significantly when we increase
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d or increase Ny, (this is another way of amplifying the success probability), as evident from
Table 1.

Table 1
Recognition rate (%) on Subset E of EYB with varying d and Npgck -

HDL1 | d=25 d=50 d=70
r =15, Npaek = 5 94.7 79.3 87.7 92.3
r =15, Npaer = 10 || 94.7 87.3 92.0 94.0

Recognition on artificially corrupted images. In order to illustrate the robustness of the ¢
NS approach for recognition and particularly the capability of our method of preserving such
property of ¢!, we emulated the robust recognition experiment on artificially corrupted images,
as done in [42]. To be specific, Subset 1 and Subset 2, which comprise images taken under near-
frontal illuminations, are used for training; and Subset 3 is used for testing.' We corrupted
each original test image with (1) randomly distributed sparse corruptions and (2) structured
occlusions. For the first setting, we replaced, respectively, 10% to 90% (with 10% resolution)
of randomly chosen pixels of the test images with i.i.d. uniform integer values in [0, 255] .!! For
the second, the mandril image is scaled to, again, 10% to 90% (with 10% resolution) of the
image size and imposed on the image with randomly chosen locations. Figure 6 shows some
typical samples of both cases, and also the effect of corruptions on distance gaps—corruptions
significantly weaken the gaps. In particular, the gap drops to 1 very rapidly as the corruption
level increases, suggesting according to our theory that significant dimension reduction via
projection is not likely beyond low corruption levels (say 20% from the plot).

To get a flavor of the level of approximation, we fix kK = 100, Ny¢p = 5, 7 = 9, Npger, = 5
and compare the HDL1 with our approximation scheme (dubbed LDL1) for d = 100, d = 200,
and d = 300, respectively. To demonstrate the advantage of the ¢! norm in terms of stability
against corruptions, we also include comparison with the very natural 2 NS variant (dubbed
HDL2).'? Figure 7 summarizes the recognition performances for each setting. Our method
exhibits a comparable level of performance with the HDL1 for corruptions less than or equal
to 20% and observable performance lag beyond that level. This is a reasonable price to pay, as
we insist on working in low dimensions for efficiency. In our current setting of the dimension,
the performance of LDL1 (not HDL1) is even worse than HDL2 for the random corruption
model, in particular when the corruption level is high. For the structured occlusion model,
LDL1 is consistently better than HDL2. Increasing d is likely to improve the approximation
accuracy further.

4.4. Object instance recognition. To investigate the applicability of our proposal for
large-scale recognition tasks, we took a subset of the multipurpose Amsterdam Library of
Object Images (ALOI) library [23].'2 This subset comprises images of 1000 toy-like objects
with fixed poses, taken under 24 different illumination directions for each object, and hence
includes 24 images per object. We randomly took 12 images of each object for training and the

0The subset division completely matches the division in [22].

1T other words, this means any valid pixel value for an 8-bit gray-scaled image.
'2This is exactly the NS classifier that was compared to the SRC classifier in [42].
'3 Available online from http://aloi.science.uva.nl/.
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Figure 7. Recognition rate under corruptions on EYB. (k = 100, Nyep = 3, and v = 9 throughout the
experiments.) Left: under random corruptions. Right: under structured occlusion.

rest for testing. Although these objects in general have nonconvex shapes and non-Lambertian
reflectance property, we still approximate the collection of images of each object with a nine-
dimensional subspace as proposed in [5]. This again turns the recognition problem naturally
into a subspace search problem.

Again we are interested in robust recognition. We added random corruption of varying
percentage (10% ~ 70%) to the test images, similar to the above for face images. We fixed
r =9, k = 100, Nyep = 10, Npger, = 30. Table 2 compares the performance of HDL1 and
HDL2 under image corruption.

The ¢* NS method again exhibits impressive tolerance to these corruptions, as compared
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Table 2
Recognition rate under corruptions for the selected (fixed pose but varying illumination conditions) ALOI
subset (r =9, k =100, Nyep = 10, Npger = 30).

Corruption level (%) | 0 10 20 30 40 50 60 70
HDL1 (%) 99.35 99.40 99.42 99.45 99.47 99.24 43.33 1.85
HDL2(%) 99.72 96.29 59.22 24.30 7.87 1.68 0.53 0.13

LDL1(%, d = 200) 99.41 99.10 89.54 66.74 42.62 — — —

Distance gap (7) |4.2858 1.3912  1.2074 1.1339 1.0833 1.0476 1.0117 —

to the ¢2 variant.!* In particular, HDL1 tolerates corruptions up to 50% almost perfectly
on the test set. By comparison, HDL2 fails badly for corruption level beyond 10%. Our
approximation scheme, LDL1 with d = 200, turns out to be effective for corruptions lower
than 20% (remains almost > 90% correct) and fails gradually beyond that. We did not try
higher projection dimensions, as (1) the computational burden would expand rapidly, and (2)
from the estimate in Figure 6, the exponent associated with the predicted dimensions by our
theory would be significant for a distance gap lower than 1.2, leading to significant demand
for large d.

4.5. Some results on running time. It is obvious that the running time of our algorithm
is largely determined by how fast we can solve the ¢! regression problem, i.e., min |y — Ax||,

for A € R¥™" the cost of which will be denoted as T (CZ, 7‘). To be concrete, in our recogni-
tion tasks for object instance recognition, the straightforward exhaustive search in the high
dimension R” costs a total of nTj (D,r), whereas the two-level search algorithm we propose
costs nNyepTyr (d,7) + NpgerTpr (D, r) if we project onto a lower-dimensional R? and repeat
Nyep to boost the success probability and then select the best Ny, for the refined scan-
ning in the original space. So the proposed algorithm will be practically interesting when
Ty (d,r) < Ty (D, ).

We first experimented with simulated examples. We generate A as an orthonormal basis
for an r-dimensional subspace in R”, where D = 2 and p varies from 4.5 to 15 with 0.5 step
size, » = 10. For each D, xy € R" is generated as i.i.d. Gaussians, and yp = Axg. We then
perform normalization and corruption addition, the same as we did in section 4.2, with the
fraction of corruption @ taken from {0.2,0.4,0.6,0.8,1.0}. We take the ¢! regression solver
from ¢! magic [10], which implements the customized IPM outlined in section 11.8.2 of [8].
Figure 8 plots the running time (in sec) vs. dimension (CZ), both in a based-2 logarithm. To
make the comparison as fair as possible, we have turned on the -singleCompThread flag to
ensure MATLAB is using only one thread for the simulation. It seems the running time scales
approximately as O(d~2). To see how that is relevant to our recognition problem, for 6 = 0.2,
Ty (256,10) = 0.009s, whereas Tjy1 (16384, 10) = 41.77s. The running time differs by several
orders of magnitude, giving our algorithm significant advantage!

1A systematic report of recognition results on ALOI is rare, with many only on a subset, say 300 objects,
perhaps because of the significant scale. One exception is [21], which reports recognition performance under
many different settings with state-of-the-art visual recognition schemes. Particularly relevant to our result
here is that they evaluated recognition on the illumination subset we choose here with the biologically inspired
HMAX model. With 25% of the data for training, they achieved 83.13% recognition rate.
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Figure 8. (Log) running time vs. (log) dimension for the simulated ¢* regression problems. It seems for
the customized IPM solver that the complezity scales like 0(&2). The computer runs 64bit Ubuntu 13.10, with
Linux Kernel 3.11.0-17 and 64 bit MATLAB 2012b. The processor is Xeon E56072.27G, and the RAM is 12G.
We did the simulation using only one thread by turning on the -singleCompThread flag for MATLAB.

To illustrate what this means in practice, we take a random instance from the Yale B
recognition task with 10% random corruptions and take d = 100. A previous experiment
has confirmed this projection dimension works well for this case (see Figure 7). Again we
take Nyep = 5 and Np,e, = 5 for the single-thread simulation; the high dimension exhaustive
search costs 7496 secs, while the our two-level search algorithm needs only 467 secs,'® over 16
times faster! The cost of our algorithm is largely dictated by Ny, (empirically even smaller
because of potential ties). In larger datasets, when N4 can be taken to be much smaller
relative to n, the advantage could be more significant.

Appendix A. Notation and preliminaries. We present detailed proofs to our technical
lemmas throughout the appendices. This part will provide some essential facts about stable
distributions, in particular the Cauchy distribution. RV is short for random variable.

Definition A.1 (stable distributions [38, page 43]). An RV'Y is stable if and only if for ar-
bitrary constants ¢1 and co there exist constants a and b such that

(A1) Y1+ Y =4a+bY,

where Y1 =4 Yo =4 Y. It is said to be strictly stable if and only if c1Y1 + c2Ya =4 bY (i.e., one
can take a = 0.).

Theorem A.2 (characteristic function of stable distributions [47, Theorem C.2]). A nondegen-
erate distribution G is stable if and only if its characteristic function Vg (t) satisfies

(A.2) log e (t; o, 8,7, ) = X (ity — [t|* + itwa (¢, «, B)),

'5These daunting numbers can be significantly cut down by exploiting multicore/GPU programming. We
have exploited multicore programming in our actual experiments over the recognition tasks.
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where the real parameters o € (0,2], € [—1,1], v € (—00,0), and \ € (0,00) and

a—1 .
(A3) %thﬁ)z{m Jrantrafz) e
—B(2/m)log |t| if o = 1.

We will use G4 (z; a, 8,7, \) to denote the stable distribution with characteristic function
Y (t;, B,7, \), following the convention in [38]. Also we write G4 (z;a, ) when v = 0 and
A =1, thinking of this setting as the canonical form.

Definition A.3 ((symmetric) ¢P-stable distributions). An RV X is called symmetric (P-stable
for some p € (0,2] if the characteristic function

(A4) x (t) = exp (=c|t[")

for some ¢ > 0 and for all t € R. [ts distribution is called symmetric (P-stable distribution.
By comparing the characteristic functions, it is clear that a symmetric /P-stable distribu-
tion is the stable distribution G4 (x;p, 0,0, ¢) for some ¢ > 0. It is also obvious that P stable
distributions exist for all p € (0,2] by virtue of the existence of the stable distribution with
the corresponding parameters.
Lemma A.4 (property of (symmetric) ¢P-stable distributions). Consider i.i.d. RVs X1,..., X,

obeying a symmetric IP-stable distribution. Then, for any real sequence {Ci}z’e[n]: we have

n n 1/p
(A5) Z CiXi =d (Z |Cz‘|p) X,
=1 i=1

where X has the same distribution as X;’s.
Proof. Assume the characteristic functions of X;’s are v (t) = exp (—c|t|’) for some ¢ > 0.
Then

exp (it Z cZ-XZ->] = H E [(ite; X;))
i=1 i=1
(A7) =Hmwmmm=m{%2mw@

=1
n 1/p
(A.S) =FE |exp | it (Z |c2-|p> X = ¢(Z?:1|Ci|p)1/pX (t) ,

completing the proof. |
We will henceforth omit the word “symmetric” for simplicity when considering ¢P-stable
distributions. In fact, we will deal exclusively with the standard Cauchy RVs X ~ C(0,1)

with PDF pc () = £ 77 and the standard half-Cauchy RVs X ~ #C (0,1) with PDF

2_1 >0
A9 g)= ik T
(A.9) prc(z) {07 .o,
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One remarkable aspect of the standard Cauchy is that it is ¢!'-stable. Furthermore, by in-
verting the characteristic function as stated in Definition A.3, one can see that all ¢'-stable
distribution has to be standard Cauchy or its scaled version (controlled by c) [38]. These facts
are fundamental to our subsequent analysis. In addition, the following two-sided bound for
the upper tail of a half-Cauchy RV will also be useful.

Lemma A.5. For X ~HC (0,1), we have for all t > 1,

11 21
(A.10) —— <PX >t < —-.
Tt Tt
Proof. We have
11 2 [ 1 2 [ 1
A1l —— = ——de <P[X>t=— —d
( ) Tt 7r/t 972 0= X 21 W/t 1+a2
2 [ 1 21
(A.12) < —/ — dr = ——.
T™J), = Tt

In fact, the upper bound holds for any ¢ > 0. [ |
For any matrix A, we will use A;, to denote its ith row and A,; its jth column.

Appendix B. Proof of Lemma 3.1. We first describe the behavior of the sum of i.i.d.
half-Cauchys in the limit, based on the generalized central limit theorem (GCLT), which we
record below for the sake of completeness.

Theorem B.1 (see [38, GCLT, page 62]). Let Xi,...,X,, be i.i.d. RVs with the distribution
function Fx (x) satisfying the conditions

(B.1) 1—Fx(z)~cx™, x— o0,

(B.2) Fx (z) ~d|z|™", z— —o0,

with > 0.1 Then there exist sequences a, and b, > 0 such that the distribution of the
centered and normalized sum

1 n
(B'B) Zn = E (; X — an)

weakly converges to the stable distribution with parameters

, p<2, —d
(B.4) a={ H=2 5 ¢
2, pu>2, c+d

asn — 0o: Fy (z) = G4 (2;0, 8). In particular, when p =1, one can take

(B.5) an = f(c+d)nlogn, bn:g(c—i—d)n.

6 Note that there are obvious typographical errors in equations (2.5.17) and (2.5.18) in the original theorem
statement. This can be seen from, e.g., Theorem 2 of section 35 of Chapter 7 in [24].
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Lemma B.2. Let Xq,...,X, be i.i.d. half-Cauchy RVs. Consider the sequence

- 2
Iy = X; — —nl .
<; 7Tn ogn> /n
One has
(B.6) Fy, (x) = G (x;:1,1).

Proof. We proceed by determining the parameters u, ¢, d, «, 8 and sequences a,, and b,, as
appearing in the GCLT above. For any half-Cauchy RV X, we have

2 [ 1 2 2 1
(B.7) 1—Fx(z)= ;/x 1722 dr = - (g — arctan:v) = ;arctan o

When z — oo, |+

2 p R (/)P 21
(B.8) 1—FX(m):;arctan—:;n§::O Gy— ~ —— 88T > 00.

So we have p =1, c = % Since Fx (z) = 0 for any <0, d = 0. Hence we have

c+d
(B.9) a=p=10="—=1,
with the centering and normalizing sequences
2 T
(B.10) an = B (c+d)nlogn = =nlogn, bn:§(c+d)n:n.
T
Hence the sequence Z,, converges weakly to G4 (x;1,1) in distribution. ]

A plot'” of G4 (2;1,1) is included in Figure 9, which will be useful to the following proof.
Proof of Lemma 3.1. By ¢! stability of Cauchy, we have

d
=d ||WH1 Z q)i7
1 =1

where Wq,..., ¥, are i.i.d. Cauchy and ®q,..., P, their corresponding half-Cauchys. So we
are interested in the behavior of the sequence

d

Z P;.w

=1

d

D Ui

i=1

(B.11) Pwll, = =a [lwll,

1

d d
. 2 > et P
(B.12) pag =P [E ®,; < ;dlogd] =P [ 7

2
2dlog d 30].
1=1

"We use implementation available online from http://math.bu.edu/people/mveillet /html/alphastablepub.
html. The convention used here (designated with subscript “ST”) is almost identical to Zolotarev’s form A
(designated with subscript “A”) in [38], with the following correspondences: asr = aa, BsT = Ba, VsT = A4,
dsT = vala.


http://math.bu.edu/people/mveillet/html/alphastablepub.html
http://math.bu.edu/people/mveillet/html/alphastablepub.html
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Figure 9. Plot of the cumulative distribution function (CDF) of the stable distribution G* (x;1,1).
Again we consider the sequence S; = (Zle D; — %dlog d) /d. Since Sy = G4 (x;1,1) as
d — 00, and any stable distribution has a continuous CDF, we have for x = 0,

(B.13) pa=P[Sy <0l = GA(0;1,1) as d — .

So there exists N € N such that for all d > N, pg > 0.3, where we observe that the numerical
value G4 (0;1,1) is strictly greater than 0.3. So one can take the numerical constant ¢ in the
lemma as

(B.14) ¢ =min (py,...,pn,0.3) > 0.

To see ¢ > 0, note that for all d € N\ {1},

d
2 2
(B.15) pg =P [Z P, < —dlogd] >P [Cbi < —logdVie [d]}
— T T
2 “r2 2 d
(B.16) =(P|®; < —logd = |—arctan | —logd > 0.
T T T
Hence we complete the proof. [ |

Appendix C. Proof of Lemma 3.2. We will use 1.onditional @8 the indicator function that
assumes either 1 (when the conditional is asserted) or 0 (otherwise).

Proof of Lemma 3.2. Similar to the above it is enough to bound Zle ®,;. For the integer
grid 1 <2 < --- <k, we have

(C.1) Q; > 1p,>1+ 1,52+ + Lo, >k

and hence

(C2) =D

=1 j=11

1p,>;.

d
=1
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Notice that ¥; = Zle 1g,>; is the sum of d independent Bernoulli RVs with rate P [®; > j]
and hence E [¥;] = dPP [®; > j]. An application of the Chernoff bound gives us

S2dP (D > j
(C.3) P[Y; < (1—26)dP [P > j]] <exp <—%> .
Now suppose that ©¥; > (1 — 0) dP [P > j] for all j € [Kk]; in this case, we would have
d k k
(C4) Z o, > Z Z 1g,>; = Z Y; (by (C.2) and the definition of 9j)
i=1 j=1i=1 j=1
k
(C.5) >d(1-9) Z]P’ [@; > j] (by our assumption above)
j=1
2 o [
(C.6) =d(1-0)~ ; /] T e (®; is half-Cauchy)
9 k
(C.7) :d(l—é);;arctan (1/9)
(C.8) >d(1-9) 2 log(k+1) (by Lemma C.1 below).
Y

d
(C9) P> &< (1—5)d%10g(k‘+1)
i=1

<P[3je[k],9; <(1—35)dP[®; > j]]

k 9 o
(C.10) < ; exp <—%LJ]> (union bound)
6%d
. < - .
(C.11) < kexp ( 27rl<:>

It is always true that

d d
(C.12) P [Z ¢; < (1-9) d% log dl—a] <P [Z P; < (1-9) d% log ([d* =] +1)
i=1 i=1

Now by setting k = [d'~%] > 1 for the above bound we derived, we have

d
(C.13) P [Z ; < (1-9) d% log ([d'™*] +1)
=1
o 52d 1

&d 1
l—a
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which leads to the result we have claimed. |

Lemma C.1. For all k € N, Z§=1 arctan (1/7) > log (k+1).

Proof. Tt is true for k = 1 as 7/4 > log(2). Now suppose the claim holds for k& — 1,
ie., Zf;ll arctan (1/7) > log (k); we need to show that it holds for k. It suffices to show
that arctan(1/k) > log (1 + 1/k). This follows from the fact that arctanx > log (1 + z) for
x € [0,1]. [ |

We next show that in some sense the bound we obtained in Lemma 3.2 above cannot be
significantly improved.

Lemma C.2. For any d € N and any 3 € (0,1) such that d° > 2, if ®1,..., 94 are i.i.d.
half-Cauchy, then

S &Xp (—C’dl_ﬁ)

d
2
. i <= >
(C.16) P g o 7Tﬁalloch—O(ai) [T logd

i=1

9

where C' is some numerical constant.
Proof. Let k = d®. Note that when ®; < k, we have

(C.17) ®; < 1,50 + 1a;>1 + - + Lo, >k
We again define 9; = 32% | 14,5 and p; = P[®; > j]; then we have

(C.18) P[0 = 0] = (1 — pr)* > exp (2dpy log(1/2)) > exp (—Cdl_ﬁ) )

where the second inequality above follows from the fact that log (1 —y) > 2ylog(1/2) for
y € [0,1/2]. Moreover, we note that

(C.19) E[J; | 9 = 0] < E[¥;] = dpj,

so we have

rd
(C20) P[> & >t[0p=0
Li=1
(4 &
(C21) <P ZZ 1,5, >t| 0, =0| (9% =0 implies ®; < k for all 4, and by (C.17))
i=1 j=0

k
(C22) <P |d+ Z ¥;>t| 9, =0| (exchange summation order and substitute into Jy)
j=1

d+2§:1E[19j | 9 = 0]
t
d+dy 5 p
t
d+d/2+2d/m flk r~tdx
t
23dlogd + 3d
t

(C.23) < (by Markov inequality and linearity of expectation)

(C.24) < (by (C.19))

(C.25) <

(substitute p; and upper bound finite sum by integral)

(C.26) =
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We set

1 2 3 2
2 =(14+— | (=pdl “d) = Z8d1 )
(C.27) t ( + logd) (Wﬁd ogd+ 2d> Wﬁd ogd+ O (d)

Then we have

d d
(C.28) P[Z@-gt] ZP[ﬁkzo]P[ZCIngth:O]
i=1 i=1

_ log d

yielding the result. [ |

Appendix D. Proof of Lemma 3.3. We will need the definition of well-conditioned basis
and some existence lemma to proceed.

Definition D.1 (well-conditioned basis for subspaces [14]). Let S be an r-dimensional linear
subspace in RP. Forp € [1,00), let || - ||, be the dual norm of || -||,- Then a matriz U € RP*"
is an (a, B, p)-well-conditioned basis for S if the following hold: (1) columns of U are linearly
independent; (2) ||Ull, < «; and (3) for all z € R", ||z||; < B||Uz|[,. U is said to be a
p-well-conditioned basis for S if & and B are v (i.e., polynomial in r) and independent of
D.

The next lemma asserts the existence of a 1-well-conditioned basis for any r-dimensional
subspaces, justified by the existence of the Auerbach basis.

Lemma D.2 (existence of 1-well-conditioned basis [14]). For any linear subspace S of dimen-
sion T, there exists an (r,1,1)-well-conditioned basis.

Proof of Lemma 3.3. Fix a 1-well-conditioned basis A for S. Suppose that

r41 r+1

(D.1) D IPAl <) 1Ayl
j=1 j=1

Since any vector w € S can be written as w = Ax for some x € R™t1,

r41 r+1
(D.2) Pwl, = [PAx|l, = [P > Agaj| <> |zl IPAl,
J=1 1 J=1
r41 r41
(D-3) < [xlloe D IPAG 1 < IIxllot Y 1A,
j=1 7=1
(D.4) < Ax|yt(r+1) =t(r+1)|wl,

where the last inequality follows from the definition of a 1-well-conditioned basis. Hence,
whenever (D.1) holds, L < ¢(r + 1), and so

r—+1 r+1
(D.5) PIL>tr+1)] <P > [PAG, >t |A4ll,
j=1 j=1



2130

JU SUN, YUQIAN ZHANG, AND JOHN WRIGHT

We finish by upper bounding the probability on the right-hand side, which we define as w.
For all i € [d], j € [r+ 1], let ¥, ; = [P A.j| / ||Asjll;- Obviously, ¥; ;’s are all half-Cauchy
RVs and also ¥; ;’s indexed by the same j are independent. Now

(D:6) w=P|> [PA,ll, >t Ayl | =P |

r+1

j=1

r+1

j=1

r+1

j=1

Next we partition the probability space and relax a bit to obtain

w

(D.7)

r+1

ZPE:

=1

+P

<||A*J|| 2‘11 J)

_r—l—l

>

Jj=1

<||A*g|| Z%)

r+1

7j=1

r+1
> tZHA*,Hl | U, ; < BVi,j

(HA*]H Z‘I’ ,J>

r+1

> tz [ Asjilly

>tY Ayl |3Wi;>B|PE T, > B

P[¥;; < B VYi,j]

<P[3V,;, > B

_r—l—l r41
(D8)  +P | (HA*JH Z\If”> >t Ayl | Wiy < BVig| P[W; < BVigjl.
_j:l =1 7=1

Applying union bound to the first term and Markov inequality to the conditional probability
in the second term, we have

_2dr+1) i (I!A*th [Z?_ Wi | Wiy < BNZ}J‘D

(D.9) @< - P[W;; < BVYi,jl
B t 350 1Al
ST A ) E S, Wy | Wiy < BV, j
(D.10) = 2d(r 1), < ’ ) [m Y }P[‘Pz‘,j < BVYi,j
B t525 1Al
2d(r+1) dE[U1| ¥, <B o
b1 = (;B ), 2 |t = ]P[‘I’m < BVi,jl,

where in the last step we take j = 1 with loss of generality, as U; ;’s are i.i.d. half-Cauchy for
any fixed j. We now define a new RV \Ill 1 as

{

and note the fact that E[¥;; | U1 < B]=E [\11{3’1] /P [¥; 1 < BJ; hence

\Ill,lv
0,

V1 <B,
\If171 > B

B

2d(r+1) dE[¥7] 2d (1 + 1)
B tP [V, < B] mB
where we have used the fact that P[V; ; < B Vi, j| <P[¥;; < B]. We arrive at the claimed

results by substituting the expectation

2

_/OB

™

dE [\1/51]
t b

(D.13) w <

PW,;; <BVij <

x
1+ 22

(D.14) E[¥])] = do = % log (1+2%)|; = %log (1+B%).
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This completes the proof. |

Appendix E. Summing up: Proof of Theorem 2.1.
Proof of Theorem 2.1. By Lemma 3.1, with probability at least c,

(E.1) dp (Pq,PS;1) < (%dlogd> dp(a, S1)-

We apply Lemmas 3.2 and 3.3 to obtain a probabilistic lower bound on dy1 (Pq, PS;) for each
j=2,...,n. As above, let Sj = S; ® {q} denote the direct sum of S; and the query point.
Let N; denote an e-net for the intersection of S; with the ¢! ball, with size at most (3/¢)"*!.
Standard arguments guarantee the existence of such a net.

Applying Lemma 3.2 to each of the N;, we obtain that

(E.2) IPwll, > (1—a)(1— 5)%dlogd

for every w € N; and every j € {2,...,n}, simultaneously, with probability at least

(E.3) 1—(n—1) <§>T+1 d " exp (—%d") .

At the same time, applying Lemma 3.3 to each 5’]-, we obtain that
(E.4) [Pwlly < t(r+1)[lwl|

simultaneously for every w € 5]-, for each j € {2,...,n}, with probability at least

(E.5) Al +771])3(” —1_ (:t_ Y 1og V14 B2

Here, B > 0 can be chosen freely to obtain the tightest possible bound on the probability of
failure. For notational convenience, write

t(r+1)e
E.6 — '/~
(E-6) ¢ %dlogd ’

and notice that on the intersection of the good events introduced above, for every h € S’j with
[hfl; <e,

(E7) Pul, < (2aioza) e

Consider an arbitrary w € §;. We can write

q—Ww

(E8) Ta—wI,

=z+h,
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withz € N;j,h e S’j, and ||h||; <e. Applying P to both sides and using the triangle inequality,
we obtain that

Pa —Pwl, > ([Pz], — [[Ph]|,) la - wl,

2
(E:9) > (Zaogd) (- )(1-8) - 9 la - wl,.
Hence, on the intersection of the good events introduced above, for each 7 = 2,...,n,
2
In(Pa,Ps;) > (2dlogd) (1= a)(1-) - ) data)
2
> (;dlogd> (L=a)(1=6) = &) ndn(q,S1)
(E.10) 2 (1 =a)(1—=96) =) ndn(Pq,PSy).
So, as long as
(1) (1-a)(1-8)—¢>1/n,

the algorithm will succeed, except on an event of probability at most

3 r+1 52
p =1—c+(n—-1) <—> d' " exp (——da>
€ 2m

e R O o T T
n m

Our remaining task is to show that with the specified choice of d, (E.11) is satisfied, and the
failure probability ¢ in (E.12) is bounded away from one by a constant.

Set ( =1-— % — a.. By assumption, ¢ > 0. We will set § = (/3 and ensure that & < (/3,
which will imply that

(E.13) (1—a)(1-0)—€ > 1—a—2¢/3 > 1/n,

ensuring that (E.11) is satisfied. We choose

B:§<2d(’”+1)(”_1)>, t:é<gd(n—1)> .24 log [max(%,d,r—kl,n—l)]

C ™ cC \T

These choices ensure that the quantity 2d(r+1)(n—1)/7B in (E.12) is at most ¢/4. Moreover,
using that B > 16/7 > (1 + /5)/2 and the crude bound log+/1+ B2 < 2log B for all
B > (1++/5)/2, we can show that the final term in (E.12) is at most c/4, giving

C 3 r+1 1 52
< - — — « _ @

€

c 2
(E.14) =1- 54— exp <—18—7Td°‘ + (1 —a)logd + (r+ 1)log(3/e) + log(n — 1)> :
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It remains to choose € and bound the exponential term above. We set

2 ¢ 1
E.15 = | =dlogd | 2 .
( ) c <7r ©8 > 3 t(r+1)
This ensures that £ = 0 trdl)e ¢ a9 promised. Plugging in for ¢, we obtain

2/m)dlogd = 37

CicClogd

(E.16) ~ (n—1)(r +1)log [max (d,r + 1,n —1)]

where C] is a numerical constant. Using the assumption that n > r, we can simplify this
bound to

Cyc(
E.1 —_
(E-17) ~ n2logn’

with Cy numerical. The exponential term in (E.12) is then at most

(E.18) exp <—C’3§2da + (1 — «a)logd+ Cyrlog (%)) .

To ensure that this term is bounded by ¢/4, and hence the probability of failure is bounded

away from one by a constant, it suffices to ensure that

1/a
log d + rlog (%) +log (%)
(E.19) d > Cs

> 2

Appendix F. Proof of Theorem 2.2. From a high level, our proof proceeds by exploiting
the approximate subspace search to solve the sparse recovery problem. Invoking some known
lower bounds for the sparse recovery problem, we arrive at the bound as stated in Theorem 2.2.
We first record/show some useful results.

Proposition F.1 (number of measurements for stable sparse recovery [17, Theorem 5.2]). For
any constant C' > 1, if any distribution p over R™*t and any algorithm </ obey that for all
x € R and A ~ u, X = &/ (Ax) and

~ . /
(F.1) Ix —x||, <C ||xr'rﬁ:gk [x —x Hl

with probability at least p > 3/4, we must have m > Clmklog t/k for some numer-
ical constant C.

The dependency of m on the approximation factor C' is directly extracted from the proof
of Theorem 5.2 in [17].

Proposition F.2 (approximate subset query [33, Theorem 3.1]). There is a randomized sparse
binary matriz A with O (gk) rows and recovery algorithm </ such that for all x € R and
S C [t] with |S| =k, x' = & (Ax,S) € R has supp (x') C S and

(F.2) [ —xs]|, <ellx—xsll,
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with probability at least 1 — 1/k¢.1®

Proof of Theorem 2.2. Consider the following distribution x (on A) and algorithm <7 for
the k-sparse recovery problem as defined in Proposition F.1.

e i is a distribution on A = [ig ], where A comprises ¢ blocks of projection matrices,
Aé, e ,AZC e R™** from the same distribution v, stacked vertically, and A € R™ %!

is a randomized sparse binary matrix with m’ = O (%gk‘) rows from a distribution that
verifies Proposition F.2. The distribution v and parameters m, ¢, ¢, ¢, and C are
specified below.

e For any x € R?, &/ comprises two steps, given Ax:

1. Identifying a subset of coordinates of x that probably contains large (in magni-
tude) elements. Suppose we target detecting the support of the largest k elements
of x. This is equivalent to identifying the nearest, out of the (]i) k-dimensional
canonical subspaces [spanned by any k of the ¢ canonical basis vectors (i.e.,
e1,...,e)], to x in the sense of ¢! point-to-subspace distance.

Let v and m be a distribution-projection dimension pair that satisfies the hy-
pothesis of Theorem 2.2 with the parameter tuples (k‘, (};) , Nmin 'y). In particular,
this means that if the canonical subspaces and x obey the gap condition dictated
by Dmin, given Aicx, for all ¢ € [¢], we can identify the k significant supports as
desired with probability at least . This is not true for all x, however. Instead,
w.l.o.g. assuming the first canonical subspace is the nearest, consider the following
“partitioning” ! of canonical subspaces Sy, ... ,S( 5k

- {1}

- 1= {"1 € [(lt»c)] \{1} : dfl (X7 SH) < nmindél (val)}

— T ={re ()] \ {1} :dpn (x,8) > Nmindp (x,S1)}
Then Z = () corresponds to cases when distance gap nmin is obeyed, so for all
i€l
(F.3)

P largmindp (Abx, ALS,) € {1} UZ| =P |argmindy (ALx, ALS,) = 1| > 7.
re()] re[ ()]

If 7 =0, for all i € [¢],

(F.4) 1 =P |argmindp (ALx,ALS,) € {1JUT| > 1.
re[()]

When Z # () and J # ), we consider in addition a spurious set Z' with |Z'| = |Z],

8For any vector x, xq is a vector of the same length of x, with coordinates in Q° set to 0; xg is a restriction
of x to its subvector indexed by 2. The same convention applies to the matrix setting in a similar manner.
19The division may not be partitioning in a strictly mathematical sense, since Z or J may be empty.
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which consists of random duplicates of subspaces in 7. So in this case

(F.5) P |argmindp (Abx, ALS,) € {1} UZ
| ~e[(0)]

(F.6) > P |argmindp (ALx, ALS,) =1
| kE{LIUT

(F.7) >P| argmin dp (Apx,ALS,:) = 1| > .
_ne{l}uJuZ’

So in any case Aic, i € [¢] is enough to guarantee a constant probability of success
v, in order to identify one subspace that is within 7y, of the best in terms of
distance to x. Denote the corresponding supports identified by the £ independent
runs by ; for all i € [¢] and II = U_,€2;, we have

(F.8)  P|ISCI:IS| =k lxselly < uin |17r_u:nku><7cul} >1-(1-7)"

We choose
(F.9) ¢ = —log5/log (1 —7)

to make this probability at least 4/5.

2. Estimating the value of x on the support from step 1. We denote k' = |II| < k.
Given II, by Proposition F.2, we can obtain an x with A px that obeys supp (x) C
II, and

(F.10) % —xmlly <ellx —xnl,
with probability at least 15/16, provided
(F.11) k¢ > 16 = ¢ > log 16/ log k.

Putting together the above constructions, with probability at least 4/5 x 15/16 = 3/4, x
above satisfies

(F.12) 1% = xlly = 1% — xrlly + fenely < [ — sl + el
(F.13) < (IT+¢) Ixmelly < (1+€) puin min_ [x —x'||, .
I llo<k

Hence this (p, @7) pair respects the hypothesis in Proposition F.1, and so A must have at least
Ciklog (t/k) /(2 + 2log (2 (1 4 €) Numin + 3)] rows for some constant Cy, or each A%, must have

1 C1klog (t/k) clk
- e Nuaidd
14 2+210g(2(1+6)77min+3)
(F.14) _ ¢ ! log —— K log (t/k) — Cjy—"— 1
' T 2log (L &) +3) BT 4008 2ogk
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rows for some constants Co, C}, and C). Note that we have n = (};) subspaces in each
subspace search problem, and hence by taking ¢ = 1/2 (corresponding to requiring C' =
1.57min approximation for the k-sparse recovery problem we started with) we have d >
Cgm logﬁ logn — 04@ for some numerical constants C3, Cy, or translating to
the parameter of Theorem 2.2,

1 1
log logn — Cy "
L=~

(F.15) d>C

- 3log 3 (Mmin + 1) logr

On the other hand, consider the (? ) canonical subspaces {Sl, . ,S(D)} spanned by any r

subset of the canonical basis {ej1,...,ep}. Let 0 # q € S, where S is another r-dimensional
subspace and S # S; for all i € [(? )] and, moreover, q ¢ S; for all i. Note that in this
case t = 1 and n = co. For any projection matrix P € R¥P Pq is either 0 or spans a
1-dimensional subspace.

e To identify the original subspace unambiguously with nontrivial probability (i.e., bet-
ter than random guessing in any case of ties), Pq cannot be zero, as for all i, PS; is
again a subspace.

e When Pq # 0, a necessary condition for unambiguous identifiability is Pq ¢ PS; for
all 7, or

D
(F.16) Pq#Psy VyeR" Vie KT)] ,

where Pg; is the submatrix indexed by the canonical basis vectors associated with the
subspace S;. Equivalently,

D
(F.17) Psicqsic #* Pgiy Vy € R", Vi € |:<T>:| .

If m < r, then by rank argument, there exists i € [(?)] such that span (Pg,) = span (P), and
hence Pscqse € span (Ps,), or there exists y € R", such that Pscqse = Pgs,y, contradict-
ing (F.17). So we must have d > r. [ |
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