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Abstract—A new reference design is introduced for holo-
graphic coherent diffraction imaging. This consists in two refer-
ences—“block” and “pinhole” shaped regions—placed adjacent
to the imaging specimen. Analysis of the expected recovery
error on noisy data—contaminated by Poisson shot noise—shows
that this simple modification synergizes the individual references
and hence leads to uniformly superior performance over single-
reference schemes. Numerical experiments on simulated data con-
firm the theoretical prediction, and the proposed dual-reference
scheme achieves a smaller recovery error than leading single-
reference schemes. A full version of this paper is available at
https://arxiv.org/abs/1902.02492.

I. INTRODUCTION

A. Holographic CDI and Holographic Phase Retrieval
Coherent Diffraction Imaging, or CDI, is a scientific imaging

technique used for resolving nanoscale scientific specimens,
such as macroviruses, proteins, and crystals [1]. In CDI, a
coherent radiation source (often an X-ray beam) is diffracted
after being incident upon a specimen. The resulting photon flux
is then measured at a far-field detector, and the measured data
are approximately proportional to the squared magnitudes of
the Fourier transform of the electric field within the diffraction
area. One can then determine the specimen’s electron density
by solving the phase retrieval problem, the mathematical
inverse problem of recovering a signal from its squared Fourier
magnitudes.

In a variant of CDI known as Holographic CDI, a “refer-
ence” portion of the diffraction area is a priori known from
experimental design (e.g. see Fig. 1). Typically, the reference
portion is simply a geometric shape cut out from the apparatus
surrounding the specimen. The resulting inverse problem, in
which a portion of the signal to be recovered is already known,
is the holographic phase retrieval problem.

For any reference choice satisfying mild assumptions, solving
the holographic phase retrieval problem amounts to solving
a structured linear system [3]. However, different reference
choices will lead to different noise stability performances.
Particularly, our previous work [3] revealed, both theoretically
and empirically, the relative merits of two popular references:
given the squared Fourier magnitudes, the block reference RB
(see Fig. 2b) performs favorably on low-frequency dominant
spectrum, whereas the pinhole reference (see Fig. 2c) has an
edge for flat spectra. It is a natural question if the merits can
be combined, and how.

Fig. 1: Holographic CDI schematic. The upper portion of the
diffraction area contains the imaging specimen of interest, and
the lower portion consists of a known “reference” shape. Image
courtesy of [2].

(a)

(b) (c)

Fig. 2: Schematic of the diffraction area in Holographic CDI
containing a specimen and a known (single) reference. Two
popular choices for the reference R are the block reference
(Fig. 2b) and the pinhole reference (Fig. 2c). The specimen
shown is the Mimivirus, courtesy of [4].

B. Our Contributions

In this paper, we answer the question in the affirmative
and show that a simple augmentation of the block and pinhole
references actually works as desired. From hindsight, this is still
a bit surprising, as the recovery error depends on the reference
choice in a complicated manner; see Eq. (IV.2). Both theoretical
(Section III) and empirical (Section V) results confirm the



effectiveness of the proposed augmentation scheme.

II. DUAL-REFERENCE DESIGN

Definition II.1. The block reference RB ∈ Rn×n and the
pinhole reference RP ∈ Rn×n are defined respectively by

RB(t1, t2) = 1, t1, t2 ∈ {0, . . . , n− 1}, (II.1)

and

RP (t1, t2) =

{
1, t1 = t2 = n− 1
0, otherwise.

(II.2)

They are shown in Fig. 2b and Fig. 2c, respectively. Suppose
that X ∈ Cn×n is an “unknown” specimen. Consider X ∈
C(2n)×(2n) given by:

X =

[
X RB
RP 0n×n

]
, (II.3)

where 0n×n is the n× n matrix of zeros. 1 We shall assume
that the magnitudes of the entries of X are within the interval
[0, 1]. By this convention, 0 values represent areas where the
incoming beam is entirely blocked, and 1 values represent areas
where the incoming beam passes through unimpeded—which
would be “empty space”.

Fig. 3: Dual-Reference Scheme. The red dotted line (added
for illustration purposes) separates the four quadrants of the
setup, as described by Eq. (II.3). The specimen shown is the
Mimivirus, courtesy of [4].

III. RECOVERY ALGORITHM

Suppose that m ≥ 4n − 1 and that Y = |X̂ |2 ∈ Cm×m
are the m×m oversampled Fourier transform magnitudes2 of
X . We seek to recover X from Ỹ , which is a possibly noise-
corrupted version of Y . We outline the following recovery
algorithm, which is the referenced deconvolution algorithm
of [3] adapted to our current dual-reference scheme.

1In (holographic) phase retrieval, the specimen X and the measurements
|F(X)|2 are often also formulated as continuous functions to better model
the physical nature of the problem. Thanks to the close connections of
various components of discrete and continuous Fourier analysis, the discrete
formulation can be thought of as approximation to the uniform sampling of
the continuous version. See full version of the paper for detailed justification.

2Here, the absolute value notation is understood in the pointwise sense.

1) Given Ỹ , apply an inverse Fourier transform (Cm×m 7→
C(4n−1)×(4n−1)) to obtain ÃX , the noisy autocorrelation
of X .3 This can be expressed as ÃX = 1

m2F
∗Ỹ (F ∗)T ,

where F ∈ Cm×(4n−1) is given by F (k, t) =
e−2πikt/m ∀ (k, t) ∈ {0, . . . ,m − 1} × {−(2n −
1), . . . , 2n− 1}.

2) Let P1 = [0n×n, In,0n×(2n−1)] and P2 =

[In,0n×(3n−1)]. It follows that P1ÃXP>2 ∈ Rn×n

(resp., P2ÃXP>1 ∈ Rn×n) is (without noise) equal to
the top-left quadrant of the cross-correlation of X and
RB (resp., X and RP ). We thus denote this as C̃�[X,RB ]

(resp., C̃�[X,RP ]).
3) Let MRB

(resp., MRP
) ∈ Rn2×n2

be the matrix satisfying
MRB

vec(X) = vec(C�[X,RB ]) (resp., MRP
vec(X) =

vec(C�[X,RP ])).4 It follows that MRB
= 1L ⊗ 1L, where

1L ∈ Rn×n is the lower-triangular matrix consisting
of all ones on and below the main diagonal, and
that MRP

= In2 . Let M = [MRB
;MRP

] and b =
[vec(C̃�[X,RB ]); vec(C̃�[X,RP ])]. The signal X is estimated
as the solution to the least-squares problem

X∗ = arg min
X∈Cn×n

‖M vec(X)− b‖2 .

Analytically, this is given by

vec(X∗) = M†b = (MTM)−1MT b.

Combining these steps and the well-known matrix Kronecker
product identity that A = BCD ⇐⇒ vec(A) = (DT ⊗
B) vec(C), it then follows that

vec(X∗) = TRB,P
vec(Y ∗), (III.1)

where
TRB,P

=
1

m2
M†

[
P2F

∗ ⊗ P1F
∗

P1F
∗ ⊗ P2F

∗

]
. (III.2)

Note that this algorithm gives a linear relationship between X̃
and Ỹ . In the noiseless setting, it exactly recovers the signal
X .

IV. ERROR ANALYSIS

For any data Ỹ following a known probability distribution,
it follows from Eq. (III.1) that

E‖X̃ −X‖2F =〈
T ∗RTR,E

[
vec
(
Ỹ
)
− vec (Y )

] [
vec
(
Ỹ
)
− vec (Y )

]∗〉
,

where ‖ · ‖2F denotes the Frobenius norm, and 〈·, ·〉 denotes
the Frobenius inner product.

In CDI, detector measurements of photon flux are subject
to quantum shot noise. This is due to intrinsic quantum
fluctuations which cannot be removed by any measurement

3It is well-known that the inverse Fourier transform of the squared Fourier
magnitudes (with sufficient oversampling) of a signal is equal to the signal’s
autocorrelation [5].

4The cross-correlations are linear in X , and hence such MRB
and MRP

exist for the noiseless cross-correlations C�
[X,RB ]

and C�
[X,RP ]

.
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system. The resulting photon flux measurements follow the
Poisson shot noise distribution given by

Ỹ ∼ind
‖Y ‖1
Np

Pois
( Np
‖Y ‖1

Y
)
, (IV.1)

where Np is the expected (or nominal) number of photons
reaching the detector, and ‖Y ‖1 is understood as the `1 norm
of a vectorized version of Y [6]. In view of Sec. 3 of [3] and
Eq. (III.1), we have

E‖X̃ −X‖2F =
‖Y ‖1
Np

〈
SRB,P

, Y
〉
, (IV.2)

where

SRB,P
= reshape

(
diag(T ∗RTR),m,m

)
, (IV.3)

and reshape(·,m,m) is the columnwise vector-to-matrix re-
shaping operator.

An analytical expression for SRB,P
can be derived, which

follows from the singular value of decomposition of 1L together
with elementary properties of the Kronecker product.

Lemma IV.1 (Chapter 1 of [7]). The singular value decompo-
sition 1L = UΣV T is such that for t, s ∈ {0, . . . , n− 1}, U
and V have columns given by

us(t) =
1√
n
2 + 1

4

sin

{
(s+ 1

2 )(t+ 1
2 )

n+ 1
2

π

}
,

vs(t) =
1√
n
2 + 1

4

cos

{
(s+ 1

2 )(t+ 1
2 )

n+ 1
2

π

}
,

respectively, and

Σ(s, s) =

[
2− 2 cos

(
s+ 1

2

n+ 1
2

π

)]−1/2
.

Proposition IV.2. For any k1, k2 ∈ {0, . . . ,m − 1},
SRB,P

(k1, k2) is equal to

1

m4

n−1∑
r,s=0

∣∣∣ σrσs
σ2
rσ

2
s + 1

u>r (P2F
∗)k1 u

>
s (P1F

∗)k2

+
1

σ2
rσ

2
s + 1

v>r (P1F
∗)k1 v

>
s (P2F

∗)k2

∣∣∣2, (IV.4)

where the notation (·)k above is used to denote the kth column
of a matrix.

In the expected squared recovery error Eq. (IV.2), both Y
and SR depend on the reference scheme in use. Empirically,
for low-frequency dominant X with typical [0, 1] values (e.g.,
images shown in Fig. 2 and Fig. 6, typical CDI specimens),
Y will have a similar spectrum to X (up to small variation in
the order of magnitude) for the various reference schemes of
interest; see Fig. 4. This stability property of spectrum can be
formally established for the single-reference setup [X,R] by
expanding |[̂X,R]|2 [3], and likewise for our dual-reference
setup X . In contrast, the weighting factors in SR can vary by

several orders of magnitudes for different reference schemes, as
shown in Fig. 5. Hence, the influence of the reference scheme
on the expected squared error is largely determined by SR.

In Fig. 5, we compare the SR’s for the single-reference
setup (either the pinhole or the block reference) with that of
our dual-reference setup. For the single-reference setup [X,R],
[3] showed that among three popular reference choices, the
block and pinhole references perform best for low-frequency
dominant Y and flat-spectrum Y , respectively. The elegant idea
of including the two references simultaneously and solving
the resulting stacked linear system helps combine the benefits.
Indeed, as can be seen from Fig. 5, SRB,P

approximates the
minimum of SRB

and SRP
uniformly over the entire frequency

spectrum.

Fig. 4: Top to bottom: squared magnitudes of the Fourier
transform of the mimivirus [4] itself, and that of combined
with the block, pinhole, and dual-references, respectively (with
n = 64, and m = 1024). These four spectra exhibit similar
low-frequency dominance, and have entries of similar orders
of magnitude.

V. NUMERICAL SIMULATIONS

We observe in numerical simulation of CDI experiments that
the dual-reference provides smaller recovery error than does
the leading single-reference schemes with the block or pinhole
reference. A comparison of the recovery error is provided in
Table I for the Mimivirus image [4] ( Fig. 2), the influenza
virus and stroma cell tubules images (shown in Fig. 6).

VI. CONCLUSION

We have proposed a novel dual-reference scheme for
Holographic CDI, together with a recovery algorithm which
provides exact recovery in the noiseless setting. For data
corrupted by Poisson shot noise, the dual-reference combines
the best features of the block and pinhole references. Numerical
experiments on simulated CDI data show the dual-reference
scheme provides a smaller recovery error than the leading
(single) reference schemes.
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Fig. 5: The top row shows colormap plots of the weighting
factors SR for the block, pinhole, and dual references, respec-
tively, when n = 64 and m = 1024. The bottom plot shows
the three weighting factors along the (four identical) bordering
cross-sections of the colormap plots.

(a) (b)

Fig. 6: Influenza and stroma cell tubules images used for
numerical simulations in Table I, courtesy of [8].

TABLE I: Empirical and expected values for the relative
squared errors ‖X? −X‖2F / ‖X‖

2
F . Recorded error values

are scaled by 10−4. Test images X of size 64 × 64 pixels
are the Mimivirus (Fig. 2), Influenza, and Tubules images
(Fig. 6). Simulated photon flux data is of size 1024 × 1024,
with Np = 1000(10242) (i.e. 1000 photons per pixel).

Empirical Err. Expected Err.
Mimivirus
Block Ref. 3.70 3.79
Pinhole Ref. 46.9 63.8
Dual Ref. (Block-Pinhole) 1.51 1.45
HIO (no ref.) 93.7 N/A
HIO (with block ref.) 42.8 N/A
HIO (with pinhole ref.) 168.1 N/A
Influenza
Block Ref. 18.7 18.5
Pinhole Ref. 50.7 31.4
Dual Ref. (Block-Pinhole) 4.64 4.70
HIO (no ref.) 695.7 N/A
HIO (with block ref.) 219.6 N/A
HIO (with pinhole ref.) 401.1 N/A
Tubules
Block Ref. 9.19 8.91
Pinhole Ref. 23.1 44.1
Dual Ref. (Block-Pinhole) 2.78 2.63
HIO (no ref.) 1607.0 N/A
HIO (with block ref.) 110.8 N/A
HIO (with pinhole ref.) 2204.8 N/A
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