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Dictionary learning (DL) is the problem of finding a sparse
representation for a collection of input signals. Its applications span
classical image processing, visual recognition, compressive signal
acquisition, as well as recent deep architectures for signal classification
[1, 2]. Despite many empirical successes, relatively little is known
about the theoretical properties of DL algorithms. Typical formulations
are nonconvex. Even proving that the target solution is a local
minimum requires nontrivial analysis [3–7]. Obtaining global solutions
with efficient algorithms is a standing challenge. Suppose that the
data matrix Y is generated as Y = A0X0, where A0 ∈ Rn×m
and X0 ∈ Rm×p. Existing recovery results pertain only to highly
sparse X0. For example, [8] showed that a certain linear programming
relaxation can recover a complete (m = n) dictionary A0 from Y ,
when X0 is a sparse random matrix with O(

√
n) nonzeros per column.

[9, 10] and [11, 12] have subsequently given efficient algorithms
for the overcomplete setting (m ≥ n), based on a combination of
initialization and local refinement. These algorithms again succeed
when X0 has Õ(

√
n) nonzeros1 per column. [13] gives an efficient

algorithm working with O(nc) nonzeros per column for any c < 1. 2

In this work, we consider the problem of recovering a complete
dictionary A0, from Y = A0X0. We give the first efficient algorithm
that provably recovers A0 when X0 has O (n) nonzeros per column.
This algorithm is based on nonconvex optimization. Our proofs give a
geometric characterization of the high-dimensional objective landscape,
which shows that w.h.p. there are no “spurious” local minima. This
abstract is based on our recent work [14].

OUR WORK: A GLIMPSE INTO HIGH-DIMENSIONAL GEOMETRY

Since Y = A0X0, with A0 nonsingular, row (Y ) = row (X0).
The rows of X0 are sparse vectors in the known subspace row (Y ).
Following [8], we use this fact to first recover the rows of X0, and
then recover A0 by solving a system of linear equations. Under
suitable probability models on X0, the rows of X0 are the n sparsest
vectors (directions) in row(Y ) [8]. One might attempt to recover
them by solving3

min ‖q∗Y ‖0 s.t. q 6= 0. (1)

This objective is discontinuous, and the domain is an open set. Known
convex relaxations [8, 15] break down beyond the aforementioned√
n barrier. Instead, we work with a nonconvex alternative:

min f (q)
.
=

1

p

p∑
i=1

hµ (q∗yi) , s.t. ‖q‖2 = 1, (2)

where yi is the i-th column of Y . Here hµ (·) is a smooth
approximation to |·| and µ controls the smoothing level. 4 The spherical
constraint is nonconvex.

Despite this nonconvexity, simple descent algorithms for (2) exhibit
very striking behavior: on many practical numerical examples, they
appear to produce global solutions. To attempt to shed some light on
this phenomenon, we analyze their behavior when X0 follows the
Bernoulli-Gaussian model: [X0]ij = ΩijVij , with Ωij ∼ Ber(θ) and
Vij ∼ N (0, 1). For the moment, suppose that A0 is orthogonal. Fig. 1

plots the landscape of EX0 [f (q)] over S2. Remarkably, EX0 [f (q)]
has no spurious local minima. Every local minimum q̂ produces a row
of X0: q̂∗Y = αe∗iX0. Moreover, the geometry implies that at any
nonoptimal point, there is always at least one direction of descent.

Probabilistic arguments show that this structure persists in high
dimensions (n ≥ 3), with high probability,5 even when the number
of observations p is large yet finite. Theorem 1 makes this precise, in
the special case of A0 = I . The result characterizes the properties
of the reparameterization g(w) = f(q(w)) obtained by projecting
Sn−1 onto the equatorial plane e⊥n – see Fig. 1 (center).

Theorem 1: For any θ ∈ (0, 1/2) and µ < O(θn−1, n−5/4), when
p ≥ Cn3 log(n/µθ)/(µ2θ2) the following hold w.h.p.:

∇2g(w) � 1
µ
c?θI ∀w s.t. ‖w‖ ≤ µ

4
√
2
, (3)

w∗∇g(w)

‖w‖ ≥ c?θ ∀w s.t. µ

4
√
2
< ‖w‖ ≤ 1

20
√
5
, (4)

w∗∇2g(w)w

‖w‖2
≤ −c?θ ∀w s.t. 1

20
√
5
< ‖w‖ ≤

√
4n−1
4n

, (5)

for some constant c? > 0, and g (w) has a unique minimizer w?

over {w : ‖w‖ <
√

4n−1
4n
} and w? satisfies

‖w? − 0‖ ≤ O
(
µ
θ

√
n log p
p

)
. (6)

In words, one sees the strongly convex, nonzero gradient, and negative
curvature regions successively when moving away from each target
solution, and the local (also global) minimizers of f (q) are next to the
target solutions in their respective symmetric sections. Here θ controls
the fraction of nonzeros in X0 in our probability model. Where
previous results required θ = O(1/

√
n), our algorithm succeeds even

when θ = 1/2− ε. The geometric characterization in Theorem 1 can
be extended to general orthobases A0 by a simple rotation, and to
general invertible A0 ∈ Rn×n by preconditioning, in conjunction
with a perturbation argument.

Although the problem has no spurious local minima, it does have
many saddle points (Fig. 1). We describe a Riemannian trust region
method (TRM) [16, 17] over the sphere which can escape these saddle
points. Using the geometric characterization in Theorem 1, we prove
that from any initialization, it converges to a close approximation to the
target solution in a polynomial number of steps. Using this algorithm,
together with rounding and deflation techniques to obtain all n rows
of X0, we obtain a polynomial-time algorithm for complete DL,
working in linear sparsity regime. This can be compared to previous
analyses, which either demanded much more stringent (sublinear)
sparsity assumptions [8–11], or did not provide efficient algorithms
[13, 18].

The particular geometry of this problem does not demand any clever
initialization, in contrast with most recent approaches to analyzing
nonconvex recovery of structured signals [9–11, 18–31]. The geometric
approach taken here may apply to these problems as well. Finally,
for dictionary learning, the geometry appears to be stable to small
noise, allowing almost plug-and-play stability analysis.
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Fig. 1. Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 is orthogonal. Left: Large sample objective function EX0
[f (q)].

The only local minima are the columns of A0 and their negatives. Center: the same function, visualized as a height above the plane a⊥1 (a1 is the first
column of A0). Around the optimum, the function exhibits a small region of positive curvature, a region of large gradient, and finally a region in which the
direction away from a1 is a direction of negative curvature (right).

NOTES
1The Õ suppresses logarithmic factors.
2[13] also guarantees recovery with linear sparsity with super-polynomial

(quasipolynomial) running time; see also [18].
3The notation ∗ denotes matrix transposition.
4To be specific, we choose to work with hµ (z) = µ log cosh(z/µ), which

is infinitely differentiable.
5Here the probability is with respect to the randomness of X0.
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