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Dictionary learning (DL) is the problem of finding a sparse
representation for a collection of input signals. Its applications span
classical image processing, visual recognition, compressive signal
acquisition, as well as recent deep architectures for signal classification
[1, 2]. Despite many empirical successes, relatively little is known
about the theoretical properties of DL algorithms. Typical formulations
are nonconvex. Even proving that the target solution is a local
minimum requires nontrivial analysis [3—7]. Obtaining global solutions
with efficient algorithms is a standing challenge. Suppose that the
data matrix Y is generated as Y = AyXo, where Ag € R"*™
and X, € R™*P. Existing recovery results pertain only to highly
sparse X . For example, [8] showed that a certain linear programming
relaxation can recover a complete (m = n) dictionary Ao from Y,
when X is a sparse random matrix with O(y/n) nonzeros per column.
[9, 10] and [11, 12] have subsequently given efficient algorithms
for the overcomplete setting (m > n), based on a combination of
initialization and local refinement. These algorithms again succeed
when X has O(y/n) nonzeros' per column. [13] gives an efficient
algorithm working with O(n°) nonzeros per column for any ¢ < 1. 2

In this work, we consider the problem of recovering a complete
dictionary Ay, from Y = Ay Xo. We give the first efficient algorithm
that provably recovers Ao when X has O (n) nonzeros per column.
This algorithm is based on nonconvex optimization. Our proofs give a
geometric characterization of the high-dimensional objective landscape,
which shows that w.h.p. there are no “spurious” local minima. This
abstract is based on our recent work [14].

OUR WORK: A GLIMPSE INTO HIGH-DIMENSIONAL GEOMETRY

Since Y = A Xo, with Ag nonsingular, row (Y') = row (Xo).
The rows of X are sparse vectors in the known subspace row (Y").
Following [8], we use this fact to first recover the rows of X, and
then recover Ao by solving a system of linear equations. Under
suitable probability models on X, the rows of X are the n sparsest
vectors (directions) in row(Y") [8]. One might attempt to recover
them by solving®

min ||¢"Y ||, s.t. ¢ #0. (1)

This objective is discontinuous, and the domain is an open set. Known
convex relaxations [8, 15] break down beyond the aforementioned
\/n barrier. Instead, we work with a nonconvex alternative:

Zh ay),

where y; is the i-th column of Y. Here h, (-) is a smooth
approximation to |-| and y controls the smoothing level. * The spherical
constraint is nonconvex.

Despite this nonconvexity, simple descent algorithms for (2) exhibit
very striking behavior: on many practical numerical examples, they
appear to produce global solutions. To attempt to shed some light on
this phenomenon, we analyze their behavior when X follows the
Bernoulli-Gaussian model: [Xo]:; = €, Vij, with ©;; ~ Ber(#) and
Vij ~ N(0,1). For the moment, suppose that Ao is orthogonal. Fig. 1
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plots the landscape of Ex, [f (q)] over S?. Remarkably, Ex, [f (q)]
has no spurious local minima. Every local minimum @ produces a row
of Xo: @Y = ae} Xo. Moreover, the geometry implies that at any
nonoptimal point, there is always at least one direction of descent.

Probabilistic arguments show that this structure persists in high
dimensions (n > 3), with high probability,’ even when the number
of observations p is large yet finite. Theorem 1 makes this precise, in
the special case of Ag = I. The result characterizes the properties
of the reparameterization g(w) = f(q(w)) obtained by projecting
S™~! onto the equatorial plane e;- — see Fig. 1 (center).

Theorem 1: For any 6 € (0,1/2) and pu < O(On~',n=°/*), when

p>Cn? log(n/,u@)/(/f@Q) the following hold w.h.p.:
2g(w) = fc*HI Vw st ||lw]| < 4\5, 3)
w*Vg(w)
fwl = <w@s @
w* V2 g(w)w _
Hugjl(\"’ W 9 Vwst iz <llwl <4/%2=L )

for some constant ¢, > 0, and g (w) has a unique minimizer w,
lwl| < /457

} and w, satisfies

|lw, — 0] <O (%v%) : ©)

In words, one sees the strongly convex, nonzero gradient, and negative
curvature regions successively when moving away from each target
solution, and the local (also global) minimizers of f (q) are next to the
target solutions in their respective symmetric sections. Here 6 controls
the fraction of nonzeros in Xy in our probability model. Where
previous results required 8 = O(1/+/n), our algorithm succeeds even
when 6 = 1/2 — £. The geometric characterization in Theorem 1 can
be extended to general orthobases Ag by a simple rotation, and to
general invertible Ag € R™*™ by preconditioning, in conjunction
with a perturbation argument.

Although the problem has no spurious local minima, it does have
many saddle points (Fig. 1). We describe a Riemannian trust region
method (TRM) [16, 17] over the sphere which can escape these saddle
points. Using the geometric characterization in Theorem 1, we prove
that from any initialization, it converges to a close approximation to the
target solution in a polynomial number of steps. Using this algorithm,
together with rounding and deflation techniques to obtain all n rows
of Xy, we obtain a polynomial-time algorithm for complete DL,
working in linear sparsity regime. This can be compared to previous
analyses, which either demanded much more stringent (sublinear)
sparsity assumptions [8—11], or did not provide efficient algorithms
[13, 18].

The particular geometry of this problem does not demand any clever
initialization, in contrast with most recent approaches to analyzing
nonconvex recovery of structured signals [9-11, 18-31]. The geometric
approach taken here may apply to these problems as well. Finally,
for dictionary learning, the geometry appears to be stable to small
noise, allowing almost plug-and-play stability analysis.
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Fig. 1. Why is dictionary learning over S™~! tractable? Assume the target dictionary Ag is orthogonal. Left: Large sample objective function E x, Lf (@)]
The only local minima are the columns of Aq and their negatives. Center: the same function, visualized as a height above the plane 0,1l (ap is the first
column of Ag). Around the optimum, the function exhibits a small region of positive curvature, a region of large gradient, and finally a region in which the

direction away from a is a direction of negative curvature (right).

NOTES

IThe O suppresses logarithmic factors.

2[13] also guarantees recovery with linear sparsity with super-polynomial
(quasipolynomial) running time; see also [18].

3The notation * denotes matrix transposition.

“To be specific, we choose to work with h, (2) = p1log cosh(z/u), which
is infinitely differentiable.

SHere the probability is with respect to the randomness of Xj.
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