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Abstract: A novel optimization formulation is provided for holographic phase retrieval
with data subjected to Poisson shot noise in the low-photon regime. This formulation, based
on regularized maximum likelihood estimation, consistently provides improved image re-
construction. © 2020 The Author(s)

1. Introduction

Holographic phase retrieval (HPR) concerns recovery of a 2D signal (i.e., image) X € C"*" from a set of (point-
wise) squared Fourier transform magnitudes

Y =|F (X,00xn,R])|* € C™™, 1)

where .# denotes the oversampled Fourier transform operator C"*3" — C™* and the reference object R € C™*"
is known. For simplicity, we can write .7 ([X,0,xn,R]) = & (X) + B, where o (X) = .7 ([X,0,x24]) and B =
F ([OnXZVHR])'

HPR arises from holographic coherent diffraction imaging (HCDI), which is a new scientific imaging technique
for resolving nanoscale specimens, such as macroviruses, proteins, and crystals [1]. In HCDI, photon flux intensi-
ties are measured using a CCD detector. These values are approximately proportional to the squared magnitudes
of the Fourier transform of (the electric field within) a specimen-reference hybrid object, for which the reference
is a priori known by experimental design. Thus, recovering the structure of the specimen amounts to solving the
HPR problem. The photon flux measurements are often corrupted by shot noise—an intrinsic uncertainty due to
quantum mechanics, which cannot be removed by any measurement apparatus [1]. Specifically, the measured data

are given by
s ¥l 5 msz
Y ~ ——Pois , ()
m=Np 171,

where ||Y]|, = Z,»j|Y,~ j| is the ¢; norm of Y, Pois(-) denotes the (pointwise) Poisson distribution, and N, is a
physical constant representing the average number of photons that each pixel of the detector receives. Note that
the expectation of Y is Y, and its variance is inversely proportional to N, [1].

When N, is sufficiently large (e.g., ~100 to 1000), the shot noise is less of a concern, and HPR can be solved
robustly by linear deconvolution [1,2] or Wiener filtering [3]. When N, is small, i.e., in the low-photon regime,
however, these established methods perform poorly, as the statistical property of the noise is not taken into account.

2. Regularized Maximum Likelihood Optimization

To account for the Poisson (shot) noise, a natural strategy is given by minimization of the Poisson distribution
negative log-likelihood function. For specimens that are of predominant interest in HCDI applications, we also
expect the resulting images to be piecewise smooth, similarly to natural images, or with sparsely distributed
spatial gradients. This is captured by the popular total variation norm, which we write as TV (+). Thus, the new
formulation we consider in this work is

Jmin F(X) = )y <|£%(X)l-,-+B,~j|2—I7i,~log (W(X)i,ﬁBi-,j’z)) +ATV(X). 3)
ij=1

Here, A controls the strength of the TV regularization, and
TV(X) = ||V X |1 +||VyX || 1, 4)

where V. X = G, x X, V,X = G, x X are directional derivatives and G, G, are the classic Sobel filters that imple-
ment center-difference derivatives.



Problem (3) is nonsmooth and nonconvex, and the TV term is reminiscent of the alternating direction method
of multiplier (ADMM) algorithm that has been successfully deployed in numerous similar problems. However,
we find that empirically ADMM struggles to find a feasible solution after we perform variable splitting. Instead,
we solve (3) directly using the classic L-BFGS quasi-Newton method. Although L-BFGS is developed for smooth
functions, previous studies have demonstrated its successful performance on a variety of practical nonsmooth
problems [4].

3. Numerical Simulations

Extensive numerical experiments were conducted using the L-BFGS quasi-Newton method to optimize Problem
(3), to be referred to as MLOpt. This performance was compared to the leading HPR methods (namely, inverse
filtering and Wiener filtering). Results across a broad range of experimental setups (e.g. various N, values, refer-
ence choices, detector sizes, beamstop sizes, etc.) clearly demonstrate the advantage of MLOpt in the low-photon
regime. For example, simulated data values with N, = 1 were generated using the specimen and reference setup
shown in Fig. 1. The reconstructed images in Fig. 2 clearly illustrate the advantage of MLOpt in the low-photon
regime.

Fig. 1. Specimen (the mimivirus [5]) and reference object (the uniformly redundant array [6]) used
in simulation. Both specimen and reference objects are of size 256 x 256 pixels, and are separated
by a 256 x 256 zero-valued region.
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Fig. 2. Algorithm comparison. Simulated data is of size 512 x 1536 (i.e. two-times oversampling),
with an average photon per pixel value of N, = 1. The top row shows the recovered specimen using
inverse filtering, Wiener filtering, and MLOpt, respectively, for data with no zeroed-out entries. The
bottom row shows the recovered specimen using the same various algorithms, respectively, for data
with a beamstop of size 51 x 51 zeroing-out the low-frequencies (as is typical in HCDI experiments).
In both cases, MLOpt provides the best image reconstruction.
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