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Abstract
PCA can be made robust to data corruption, i.e.,
robust PCA. What about the deep autoencoder, as
a nonlinear generalization of PCA? This further
motivates us to “reinvent” a factorization-based
PCA as well as its nonlinear generalization. Fo-
cusing on sparse corruption, we model the sparsity
structure explicitly using the `1 norm to obtain var-
ious robust formulations. For linear data, robust
factorization performs comparably to the semi-
nal convex formulation of robust PCA, whereas
robust autoencoders provably fail. For nonlinear
data, we perform careful experimental evaluation
of robust deep autoencoders and robust nonlinear
factorization for corruption removal on natural
images. Both schemes can remove a considerable
level of sparse corruption and effectively recon-
struct the clean images.

1. Introduction
From robust PCA to robust manifold learning. Despite
its practical popularity, the classic PCA is well known to be
sensitive to data corruption and outliers (Huber & Ronchetti,
2009). Over the last decade, a number of robust formula-
tions of PCA (Candès et al., 2011; Chandrasekaran et al.,
2011; Xu et al., 2012; Lerman et al., 2014) have been pro-
posed, taking a common geometric view: finding a best-fit
subspace to data that are contaminated by gross errors.

Can we do similar things for data lying on low-dimensional
manifolds, which are often considered as natural general-
izations of subspaces? For example, this is relevant for
visual data: visual appearance of an object is determined
by only few explanatory factors (e.g., pose, deformation,
illumination, etc.) and its images lie near a low-dimensional
manifold (Donoho & Grimes, 2005). On the other hand,
cast shadows, occlusions, and defects in imaging sensors
do not correspond to any explanatory factors of interest,
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but lead to structured erasure and irrelevant imputation of
image pixels or parts—called corruptions, gross errors, and
outliers. So we indeed have a low-dimensional manifold, or
perhaps manifolds, and sparse corruptions and rare outliers.

Motivation: robustness against natural corruption &
perturbation. Vision systems based on deep neural net-
works (DNNs) can be jeopardized by maliciously con-
structed small perturbations (Szegedy et al., 2013; Heaven,
2019; Miller et al., 2019). While this concerns mission-
critical applications, it does not account for practical corrup-
tion and perturbation: e.g., salt-and-pepper noise, motion
blurring, weather conditions, camera tilting, occlusions, that
are not maliciously constructed and need not be small in
any sense. Numerous recent works (Hosseini et al., 2017;
Dodge & Karam, 2019; Geirhos et al., 2019; Hendrycks
et al., 2019b; Hendrycks & Dietterich, 2019; Xie et al.,
2019) have suggested DNN-based systems are also not ro-
bust against such corruption and perturbation.

Our contribution. In this paper, we focus on an unsuper-
vised setting and show that robust recovery of nonlinear
visual data subject to sparse corruption is possible. We
model the sparsity structure explicitly and derive nonlin-
ear generalizations of PCA and the robust variants—robust
deep autoencoder and robust nonlinear factorization. We
highlight the efficacy of nonlinear factorization, as an attrac-
tive simplification of autoencoders. In our experiments, the
proposed robust models show great promise for performing
robust visual manifold learning against sparse corruption.

2. Method
Let x1, . . . ,xm ∈ Rn be a set of zero-centered data points
and write X = [x1, . . . ,xm] ∈ Rn×m. In this paper, we
focus on additive sparse corruption, i.e. X̂ = X+C,where
C is a sparse matrix containing very few nonzero entries. A
crucial component in our formulations is to explicitly model
the sparsity in C. While there are many choices, we use
the classic `1 norm ‖·‖1 (Candès, 2014). Below, we always
assume p ≤ n.

2.1. PCA, Autoencoder, and Factorization

The classic PCA uses the top eigenspace of XXᵀ, or equiv-
alently, the top (left) singular-vector space of X to fit the
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point set.

The autoencoder is a classic neural network model for unsu-
pervised learning, consisting of only a linear encoder A that
typically maps the input into a low-dimensional “code", and
a linear decoder B that maps the “code" back to the original
space, so that X ≈ ABX . This is often formulated as:

min
A∈Rp×n,B∈Rn×p

‖X −BAX‖2
F (autoencoder).

The seminal paper Baldi & Hornik (1989) is the first to
identify a clear connection of the autoencoder with PCA:
under mild nondegeneracy conditions, any B at a local
minimizer recovers the top rank-p eigenspace of XXᵀ.
One can hence find the desired subspace basis using simple
numerical methods.

Yet another popular formulation is based on factorization:

min
B∈Rn×p,Z∈Rp×m

‖X −BZ‖2
F (factorization).

Same as the autoencoder, it can be proved that the top rank-
p eigenspace can be recovered from any local minimizer
(proved in Theorem A.1). Therefore, from the geometric
viewpoint, both the autocoder and factorization perform
PCA on the given data X .

2.2. Robust PCA, Robust Autoencoder, and Robust
Factorization

When we observe the corrupted data X̂ , we want to explic-
itly account for the sparse corruption C. A convex relax-
ation proposed by a couple of breakthrough papers (Candès
et al., 2011; Chandrasekaran et al., 2011) is

min
X,C

‖X‖∗ + λ‖C‖1 s. t. X̂ = X + C, (convex RPCA)

based on the observation that X is low-rank if the data
points it contains can be well approximated by a linear
subspace. The norms ‖·‖∗ and ‖·‖1 are used to promote the
low-rankness and sparsity structures, respectively.

Here, we consider alternative formulations built directly on
the autoencoder and factorization. This helps us to general-
ize easily to the manifold setting later. Now in autoencoder
and factorization, we hope that BAX̂ and BZ recover
the low-rank part of X̂ , i.e., X , so that the differences
X̂ −BAX̂ and X̂ −BZ both represent the sparse cor-
ruption C. Thus, it is natural to consider

min
A∈Rp×n,B∈Rn×p

∥∥∥X̂ −BAX̂
∥∥∥

1
(robust autoencoder),

min
B∈Rn×p,Z∈Rp×m

∥∥∥X̂ −BZ
∥∥∥

1
(robust factorization).

Robust autoencoder will not work; we make a formal ar-
gument in Appendix B and direct simulation also confirms

this. By contrast, robust factorization works in a regime even
larger than the convex relaxation; again, see Appendix B.
Robust factorization or its variants as an alternative formula-
tion for robust PCA have been briefly discussed in (Li et al.,
2018; Charisopoulos et al., 2019; Brooks et al., 2013).

2.3. Generalizations for Robust Manifold Learning

Now we move to the nonlinear world and assume the data
lie on low-dimensional manifolds. The deep autoencoder is
a simple generalization of the autoencoder into a nonlinear
form:

min
W ,V

‖X − gV ◦ fW (X)‖2
F (deep autoencoder).

The idea is simply replacing encoder A and decoder B
by nonlinear mappings fW and gV paramterized by W
and V , respectively. The is exactly the autoencoder that
people use for nonlinear dimension reduction (Hinton &
Salakhutdinov, 2006), information retrieval (Salakhutdinov
& Hinton, 2009), and outlier detection (Sakurada & Yairi,
2014)—successful training of deep autoencoders in Hinton
& Salakhutdinov (2006) has spawned the current resurgence
of DNNs.

The same idea also leads to a nonlinear generalization of
factorization:

min
V ,Z

‖X − gV (Z)‖2
F (nonlinear factorization).

This formulation is much less popular than the deep au-
toencoder, although there exist few precursors (Tan & May-
rovouniotis, 1995; Fan & Cheng, 2018; Bojanowski et al.,
2019; Park et al., 2019; Heckel & Hand, 2018). Arguably, it
admits a more direct interpretation that deep autoencoders:
it directly learns the explanatory factors Z and the genera-
tive process modeled as a neural network gV .

Inspired by the robust autoencoder and robust factorization,
we propose natural robust extensions to deep autoencoder
and nonlinear factorization:

min
W ,V

∥∥∥X̂ − gV ◦ fW

(
X̂
)∥∥∥

1
(robust deep autoencoder, RDAE),

min
V ,Z

∥∥∥X̂ − gV (Z)
∥∥∥

1
(robust nonlinear factorization, RNLF).

In Section 2.2 we showed both theoretically and empirically
that the robust autoencoder does not solve the robust PCA
problem. Here, we nonetheless do not rule out RDAE, as
the linear algebra argument is very specific to the linear case
and things may change dramatically once we allow nonlin-
ear mappings. In fact, as we shall see in the experiment
(Section 3), RDAE and RNLF mostly perform comparably.

2.4. Generalization by Others

(Zhou & Paffenroth, 2017) proposes another robust version
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of deep autoencoder as

min
W ,V ,X

‖X − gV ◦ fW (X)‖F + λ‖X̂ −X‖1,

where they introduce an additional variable X to account
for the clean data. In our RNLF, this is conveniently repre-
sented as gV (Z) and hence our formulation is much neater.
(Chalapathy et al., 2017) proposes a modification to the
shallow autoencoder

min
A,B,S

∥∥∥X̂ −Aσ(B(X̂))− S
∥∥∥

F
+

λ1

(
‖A‖2

F + ‖B‖2
F

)
+ λ2‖S‖1,

where the ‖A‖2
F + ‖B‖2

F was inspired by nuclear norm
as regularizer for low-rankness. Compared to both, our
formulation is much cleaner.

3. Experiments
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Figure 1. MNIST restored images by RDAE and RNLF for differ-
ent severity levels of Impulse Noise.
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Figure 2. MNIST restored images by RDAE and RNLF for differ-
ent severity levels of Gaussian Noise.

3.1. Recovery: visual results

We verify the effectiveness of robust deep autoen-
coder (RDAE) and robust nonlinear factorization (RNLF)
through preliminary experiments on a number of im-
age benchmark datasets: MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), CIFAR10 and CI-
FAR100 (Krizhevsky et al., 2009). We simulate our cor-
rupted images by applying Salt-and-Pepper Impulse Noise
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Figure 3. Fashion-MNIST restored images by RDAE and RNLF
for different severity levels of Impulse Noise.
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Figure 4. Fashion-MNIST restored images by RDAE and RNLF
for different severity levels of Gaussian Noise.

and Gaussian noise to the test data of these benchmark
datasets with different severity levels, ranging from benign
to severe corruptions. Different corruption severity levels
and brief explanations are included in Table 2. In Fig. 1,
Fig. 2, Fig. 3, and Fig. 4, we show randomly selected ex-
amples of restored images by our models along with the
corresponding clean and corrupted images. It is clear that
our models are able to recover images reasonable well, dis-
carding the sparse noise present in them.

We implement RDAE and RNLF with the deep learn-
ing framework PyTorch 1.4. We build our neural net-
work models using convolutional neural networks (CNNs),
choose sigmoid activation σ(x) = 1

1+e−x or tanh activa-

tion σ(x) = ex−e−x

ex+e−x in the output layer depending on the
normalization used in image preprocessing, learn and up-
date the network parameters and/or the latent codes using
Adam (Kingma & Ba, 2014) for all network models. We
also exploit the learning rate scheduler with a decay fac-
tor of 0.1 for every 100 epochs. The detailed network ar-
chitecture along with the hyper-parameters are provided
in Appendix C.

3.2. Recovery measured by classification accuracy

In this experiment, we evaluate the denoising effectiveness
of RDAE and RNLF by feeding the restored images to DNN-
based visual recognition systems. We use the recognition
performances on clean and corrupted images as baseline
references to measure how much our methods can help mit-
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Table 1. Object recognition performance of DNN-based models on clean, corrupted, and restored images by RDAE and RNLF. From the
top to bottom: 1st group: MNIST; 2nd group: Fashion-MNIST; 3rd group: CIFAR10; 4th group: CIFAR100.

Impulse Noise & Gaussian Noise
Network Clean Image Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Severity 6 Mixup1

PC2 98.96 98.96 92.91 89.28 72.31 73.92 49.38 54.85 30.59 34.87 19.98 20.15 14.68 13.14 53.69 54.79
RDAE + PC2 98.70 98.61 98.55 98.68 98.41 98.69 98.10 98.57 97.81 98.39 96.98 97.90 95.88 97.37 97.87 98.35
RNLF + PC2 98.54 98.32 98.45 98.55 98.38 98.57 97.94 98.40 97.14 97.82 95.73 96.85 93.61 94.27 97.69 97.82

PC2 90.38 90.38 68.48 81.94 46.13 71.44 32.78 57.28 26.04 44.29 21.43 34.70 18.04 28.39 44.02 58.14
RDAE + PC2 86.91 86.47 86.43 86.48 85.93 85.30 85.48 83.41 85.17 82.30 84.60 79.45 83.89 76.24 85.58 83.63
RNLF + PC2 86.10 85.81 85.76 85.26 85.65 84.24 84.80 81.55 84.80 78.93 84.39 75.53 83.03 71.24 85.23 81.73

ResNet3 93.71 93.71 40.05 75.19 14.60 52.35 11.90 41.78 10.95 32.48 10.62 25.60 10.41 21.54 27.55 48.49
RDAE + ResNet3 85.55 86.19 86.19 87.05 85.75 83.75 85.50 79.80 85.29 74.39 84.81 68.30 82.22 59.04 84.85 81.28
RNLF + ResNet3 81.05 83.63 80.60 84.08 80.03 79.59 81.14 77.12 79.94 72.40 79.70 70.34 78.66 64.46 81.52 77.22

ResNet3 70.79 70.79 13.46 38.90 5.09 23.66 2.72 19.04 1.73 15.52 1.49 12.45 1.27 10.47 14.03 27.07
RDAE + ResNet3 53.73 54.17 53.51 56.05 54.10 52.17 52.18 46.89 52.44 41.34 53.05 34.28 51.32 28.04 53.64 50.32
RNLF + ResNet3 47.94 49.19 45.87 46.91 47.74 42.72 40.99 43.52 39.65 42.25 45.61 37.62 45.06 32.52 44.61 43.88

1 Mixup: mix up corruption ratio — randomly selecting a corruption from no corruption and severity 1-6 for each image.
2 PC: a pretrained classifier trained on clean MNIST (Fashion-MNIST) as a DNN-based model for MNIST (Fashion-MNIST) test data.
3 Resnet with 56 layers (He et al., 2016).

Table 2. The numbers indicate severity levels of noise. For Im-
pulse Noise, these numbers correspond to the fraction of pixels
being corrupted. For Gaussian Noise, these numbers indicate the
standard deviation of Gaussian distribution with zero mean.

MNIST/Fashion-MNIST & CIFAR10/100
Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Severity 6

Impulse Noise 0.05 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.25 0.30 0.30
Gaussian Noise 0.10 0.04 0.15 0.06 0.20 0.07 0.25 0.08 0.30 0.09 0.35 0.10

igate the effects of corruption on classification. For each
corruption type, Impulse Noise and Gaussian Noise, we
conduct experiments on each individual corruption severity
and mixup corruption severity, respectively. Table 1 shows
that our methods can reconstruct both clean and corrupted
images reasonable well, without loss of any prime informa-
tion. As the corruption severity increases, the classification
accuracy of DNN-based models on the corrupted images
drop dramatically, while we can see graceful degradation
of the performance on the restored images by RDAE and
RNLF—which is always substantially better than the cor-
rupted images, even when the corruption is severe.

4. Related Work
Our focus here is on robustness for manifold learning, which
is intrinsically an unsupervised learning problem. Several
public datasets have been constructed to foster research on
average-case robustness in the supervised visual recognition
tasks (Hendrycks et al., 2019b; Hendrycks & Dietterich,
2019; Xie et al., 2019). The corruptions and perturbations
considered in these datasets are far broader than the sparse
corruptions we consider here. The recent works (Geirhos
et al., 2018; Lopes et al., 2019; Hendrycks et al., 2019a)
addressing the robustness issue on these datasets have al-
most exclusively hinged on data augmentation and model
expansion, which is plausible and promising but seems un-

sustainable. Practical corruptions and perturbations tend to
much less amenable to low-dimensional models than the
informative visual contents themselves, raising the concern
if data augmentation can ultimately tame the curse of di-
mensionality. Here, instead of the data-driven approach, we
advocate a model-based approach to explicitly model the
structures in the corruptions and perturbations.

Our corruption removal task here may remind of denoising
autoencoders (Vincent et al., 2010). They are disparate, as
in training denoising autoencoders, clean data are required
and multiple iid noisy versions of the same data point are
seen—it is a supervised setting. Here, only one corrupted
version of each data point is seen and no clean data are
available—an unsupervised setting.

Nonlinear factorization can be traced back at least to (Tan &
Mayrovouniotis, 1995), and recently has been deployed for
deep nonlinear matrix factorization (Fan & Cheng, 2018),
generative models (Bojanowski et al., 2019), and 3D shape
representation (Park et al., 2019). Certain aspects of the
modeling and computational advantages have just started
to emerge. It is also closely related to the intriguing deep
generative priors (Ulyanov et al., 2018; Bora et al., 2017;
Heckel & Hand, 2018). We are the first to extend the idea
for robust representation learning.
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A. Factorization as PCA
Theorem A.1. Assume that X ∈ Rn×m (with m ≥ n) is
full rank and that XXᵀ has distinct eigenvalues. Then, at
any local minimizer of the optimization problem
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B∈Rn×p,Z∈Rp×m

‖X −BZ‖2
F , p ≤ n, (1)

B spans the top rank-p eigenspace of XXT . In fact, all
these local minimizers are also global minimizers.

Proof. The first-order optimality condition is

BᵀX = BᵀBZ, (2)
XZᵀ = BZZᵀ. (3)

By Eq. (2), at any first-order critical point,

Z = (BᵀB)†BᵀX +
(
I −B†B

)
L

= B†X +
(
I −B†B

)
L

(4)

for arbitrary L’s with a compatible dimension, where (·)†
denotes the matrix pseudoinverse. Thus, at any first-order
critical point,

BZ = BB†X + B
(
I −B†B

)
L = BB†X, (5)

where we have simplified the expression using B =
BB†B. On the other hand, by Eq. (3), we have

XZᵀBᵀ = BZZᵀBᵀ. (6)

Substituting Eq. (5) into the last and write Σ .= XXᵀ, we
obtain

ΣBB† = BB†ΣBB†, (7)

where we have simplified the expression using that BB† is
symmetric. Since BB†ΣBB† is symmetric, we conclude
that

ΣBB† = BB†Σ. (8)

Henceforth we will write P to mean the orthoprojector, and
PB

.= BB† simply means orthoprojector onto the column
space of B. For any orthogonal matrix U ∈ On, it can be
easily verified by expressing B in its SVD form that

PB = UPUᵀBUᵀ. (9)

Substituting the last into Eq. (8) and write the eigendecom-
position of Σ as Σ = UΛUᵀ, we have that

UΛUᵀUPUᵀBUᵀ = ΣBB†

= BB†Σ
= UPUᵀBUᵀUΛUᵀ,

(10)

which implies

ΛPUᵀB = PUᵀBΛ. (11)

Obviously, PUᵀB must be a diagonal matrix, since Λ is
diagonal with distinct values. Since it is an orthoprojector
and hence PUᵀB = P2

UᵀB , we conclude that any diagonal
element of PUᵀB is either 1 or 0.

So at any first order critical point, if rank (B) = r (with
r ≤ p), there is an index set J ⊂ {1, . . . , n} so that

PB = UPUᵀBUᵀ = UJUᵀ
J , (12)

where UJ consists of columns of U indexed by J . Obvi-
ously, range(B) = range(UJ). So B can be written in the
form

B = [UJ ,0n×(p−r)]C (13)

for a certain invertible C ∈ Rp×p, implying that

B† = C−1[Uᵀ
J ; 0(p−r)×n]. (14)
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Substituting this into Eq. (4), we obtain that

Z = C−1
[

Uᵀ
J

0(p−r)×n

]
X

+ (I −C−1
[

Uᵀ
J

0(p−r)×n

]
[UJ ,0n×(p−r)]C)L

= C−1
[

Uᵀ
J X

0(p−r)×n

]
+ C−1

[
0

Ip−r

]
CL

= C−1
[

Uᵀ
J X

last p− r rows of CL

]
.

We now discuss two cases separately.

• r < p. When r < p, we can perturb L slightly (remem-
ber L can be arbitrary) to obtain a full-rank matrix Ẑ.
It is easy to verify that BZ = BẐ. Now when Ẑ is
full-rank, f(B, Ẑ) is strongly convex in B. Hence we
can find a B̂ so that for all B = (1− ε)B + εB̂ with
ε ∈ (0, 1),

f(B, Ẑ) < f(B, Ẑ) = f(B,Z). (15)

Since ε can also be made arbitrarily small and B → B
as ε→ 0, (B,Z) is a saddle point.

• r = p. In this case, we have

B = UJC (16)

Z = C−1Uᵀ
J X (17)

for an index set J ⊂ {1, . . . , n} with |J | = p and an
invertible matrix C ∈ Rp×p. There are

(
n
p

)
possible

choices for J , corresponding to
(

n
p

)
first-order critical

points.

Next we show that when J 6= {1, . . . , p}, the
corresponding critical point is not a local minimizer.
First note that when B is full-rank, Z is uniquely
determined by Eq. (2). So we have

f(B,Z(B)) = ‖X −BZ(B)‖2
F

=
∥∥X −BB†X

∥∥2
F

= ‖X − PBX‖2
F

= ‖X‖2
F − 〈UJUᵀ

J ,X〉

= ‖X‖2
F − 〈IJ ,Λ〉

= ‖X‖2
F −

∑
j∈J

λj .

Now since J 6= {1, . . . , p}, there exists an index ` ∈
{1, . . . , p} but ` /∈ J and there also exists an index
k ∈ J so that k ≥ `. Now consider an ε-perturbation
to uk (i.e., the k-th column in U , where we assume

that the columns in U are ordered corresponding to
the descending order of the eigenvalues λi’s): ûk =
(uk + εu`)/

√
1 + ε2 and replace uk in UJ by ûk to

form ÛJ . It is obvious we still have Ûᵀ
J ÛJ = IJ . Now

let B̂ = ÛJC and Ẑ = C−1Ûᵀ
J X . The perturbed

objective

f(B̂, Ẑ) = ‖X‖2
F −

〈
ÛJÛᵀ

J ,X
〉

(18)

= ‖X‖2
F −

〈
UᵀÛJÛᵀ

J U ,Λ
〉

(19)

= ‖X‖2
F −

∑
j∈J, j 6=k

λj −
1

1 + ε2λk −
ε2

1 + ε2λ`

(20)

= ‖X‖2
F −

∑
j∈J

λj + ε2

1 + ε2 (λk − λ`).

(21)

Since λk − λ` < 0, we have that for all ε > 0

f(B̂, Ẑ) < f(B,Z). (22)

Since ε can be arbitrarily small, (B,Z) is a saddle
point.

When J = {1, . . . , p}, the objective value is
‖X‖2

F −
∑p

i=1 λi =
∑n

i=p+1 λi. We know that
BZ has a rank no larger than p, and the best rank-p
approximation to X leads to the lowest objective
value, which is

∑n
i=p+1 λi. So this case corresponds

to a local minimizer which is also a global minimizer.

By the above argument, when J = {1, . . . , p}, B =
U{1,...,p}C for a certain invertible matrix C. So B
spans the top rank-p eigenspace of XXᵀ, completing the
proof. �

B. Robust Autoencoder vs. Robust
Factorization

We first argue that robust autoencoder will not work. For
simplicity, we assume X is exactly rank-p. Now if BAX̂

were to recover the clean data X , then col(BAX̂) =
col(X) and row(BAX̂) = row(X), where col(·) and
row(·) denote the column and row spaces, respectively.
From col(BAX̂) = col(X) we know that B must be
column full-rank, and so row(BAX̂) = row(AX̂) =
row(X). The last equality implies that A must be row full-
rank, and so row(X̂) = row(X), which is generally not
possible for X̂ = X + C with sparse but substantial C. Di-
rect simulation in Fig. 5 confirms this argument and robust
autoencoder almost always fails. By contrast, robust factor-
ization works in a larger regime than the convex relaxation,
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and continues to work reasonably even if we over-specify
the rank p.

C. Network Architecture

Table 3. Robust Deep Autoencoder network architecture for
MNIST and Fashion-MNIST datasets.

Hyperparameters

Model learning rate Batch size
0.0001 100

Code dimension
30

Input Corrupted Image (C, H, W): (1, 28, 28)
Model Layer Output Dimension

Encoder

Convolution ((4,4), 64,
stride 2, padding 1) (64, 14, 14)

Batch Normalization, LeakyReLU (64, 14, 14)
Convolution ((4,4), 128,

stride 2, padding 1) (128, 7, 7)

Batch Normalization, LeakyReLU (128, 7, 7)
Convolution ((7,7), Code dimension,

stride 1, padding 0) (Code dimension, 1, 1)

Decoder

Deconvolution ((7,7), Code 128,
stride 1, padding 0) (128, 7, 7)

Batch Normalization, LeakyReLU (128, 7, 7)
Deconvolution ((4,4), 64,

stride 2, padding 1) (64, 14, 14)

Batch Normalization, LeakyReLU (64, 14, 14)
Deconvolution ((4,4), 1,

stride 2, padding 1) (1, 28, 28)

Sigmoid (1, 28, 28)
Output Restored Image (C, H, W): (1, 28, 28)

Table 4. Robust Nonlinear Factorization network architecture for
MNIST and Fashion-MNIST datasets.

Hyperparameters

(Model, Code) learning rate Batch size
(0.0001,10) 100

Code dimension
30

Input Latent Code & Corrupted Image Dimensions: (Code dimension)
Model Layer Output Dimension

Factorization

Reshape (Code dimension, 1, 1)
Deconvolution ((7,7), 128,

stride 1, padding 0) (128, 7, 7)

Batch Normalization, LeakyReLU (128, 7, 7)
Deconvolution ((4,4), 64,

stride 2, padding 1) (64, 14, 14)

Batch Normalization, LeakyReLU (64, 14, 14)
Deconvolution ((4,4), 1,

stride 2, padding 1) (1, 28, 28)

Sigmoid (1, 28, 28)
Output Restored Image (C, H, W): (1, 28, 28)

Table 5. Robust Deep Autoencoder network architecture for
CIFAR-10 and CIFAR-100 datasets. Residual blocks architec-
ture has been adopted from (Brock et al., 2018).

Hyperparameters

Model learning rate Batch size
0.0005 100

Code dimension
1024

Input Corrupted Image (C, H, W): (3, 32, 32)
Model Layer Output Dimension

Encoder

Convolution ((3,3), 128,
stride 1, padding 1) (128, 32, 32)

ResBlock down (256, 16, 16)
ResBlock down (512, 8, 8)
ResBlock down (1024, 4, 4)

Reshape & Linear (Code dimension)

Decoder

Linear & Reshape (1024, 4, 4)
ResBlock up (512, 8, 8)
ResBlock up (256, 16, 16)
ResBlock up (128, 32, 32)

Batch Normalization, ReLU (128, 32, 32)
Convolution

((3,3), 128, stride 1, padding 1) (3, 32, 32)

Tanh (3, 32, 32)
Output Restored Image (C, H, W): (3, 32, 32)

Table 6. Robust Nonlinear Factorization network architecture for
CIFAR-10 and CIFAR-100 datasets. Residual blocks architecture
has been adopted from (Brock et al., 2018).

Hyperparameters

(Model, Code) learning rate Batch size
(0.0005, 10) 100

Code dimension
1024

Input Latent Code & Corrupted Image Dimensions: (Code dimension)
Model Layer Output Dimension

Factorization

Linear & Reshape (1024, 4, 4)
ResBlock up (512, 8, 8)
ResBlock up (256, 16, 16)
ResBlock up (128, 32, 32)

Batch Normalization, ReLU (128, 32, 32)
Convolution

((3,3), 128, stride 1, padding 1) (3, 32, 32)

Tanh (3, 32, 32)
Output Restored Image (C, H, W): (3, 32, 32)
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Figure 5. Phase transition plots of the various robust PCA methods. From left to right: convex relaxation, robust autoencoder, robust
factorization, overparametrized robust factorization.


