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Abstract

In many physical systems, inputs related by intrin-
sic system symmetries are mapped to the same
output. When inverting such physical systems,
i.e., solving the associated inverse problems, there
is no unique solution. This causes fundamental
difficulty in deploying the emerging end-to-end
deep learning approach. Using the generalized
phase retrieval problem as an illustrative exam-
ple, we show that careful symmetry breaking on
training data can help remove the difficulty and
significantly improve the learning performance.
We also extract and highlight the underlying math-
ematical principle of the proposed solution, which
is directly applicable to other inverse problems. A
full-length version of this paper can be found at
https://arxiv.org/abs/2003.09077.

1. Introduction
For many physical systems, we observe only the output and
strive to infer the input. The inference task is called in-
verse problem. Formally, the underlying system is modeled
by a forward mapping f , and solving the inverse problem
amounts to identifying the inverse mapping f−1.

Let y denote the observed output. Traditionally, inverse
problems are phrased as regularized optimization problems:
minx `(y, f(x)) + λΩ(x), where x represents the input
to be estimated, `(y, f(x)) ensures y ≈ f(x), and Ω(x)
encodes structural information about x to make the problem
well posed. Recently, with the resurgence of deep learning,
data-driven functions are proposed to replace parts or the
entirety of `, Ω, and numerical methods for solving the
regularized optimization. The most radical is using neural
networks to directly approximate f−1, also known as the
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end-to-end approach. Several review articles (McCann et al.,
2017; Lucas et al., 2018; Arridge et al., 2019; Ongie et al.,
2020) have covered these recent developments. We note
that most of the success examples are about linear inverse
problems, where the forward mapping f is linear.

In this paper, we focus on the end-to-end approach applied
to nonlinear inverse problems. This combination is attractive
because when f is nonlinear, in practice it may be tricky to
gather complete information of f , rendering alternatives that
need accurate modeling of f ineffective. We are interested
in f ’s with symmetries that systematically map different
x’s to the same y, e.g., f(x) = x2 with a sign symmetry,
f(A,X) = AX with scaling and permutation symmetries,
and f that is invariant to translation and rotation of the input
(translation and rotation symmetries). Such symmetric for-
ward mappings are prevalent in nonlinear inverse problems.

Figure 1. Learn to take square root. (Left) The forward and in-
verse models; (Right) The function (in orange) determined by the
training set.

Symmetries can cause significant difficulty for the end-to-
end approach. To see this, suppose we randomly sample real
values xi’s and form a training set

{
xi, x

2
i

}
and try to learn

the square-root function, allowing both positive and negative
outputs, using the end-to-end approach. Now if we think of
the function determined by the training set, which the neural
network is trying to approximate, it is highly oscillatory (see
Fig. 1)1: the sign symmetry dictates that in the training set,
there are frequent cases where x2i and x2j are close but xi
and xj have different signs and are far apart. Although in
theory neural networks with adequate capacity are universal
function approximators, in practice they will struggle to
learn such irregular functions. For general inverse problems,

1Interestingly, the more train samples one gathers, the more
serious the problem is.
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so long as the forward symmetries can relate remote inputs
to the same output, similar problems can surface.

In learning the square root, one can quickly eliminate the
difficulty by fixing the signs of xi’s to either positive or
negative—which breaks the sign symmetry, and effectively
learn the positive or negative square root function. In this
paper, we show that similar symmetry breaking can be per-
formed for nontrivial problems, and also identify the un-
derlying mathematical principle. We take the generalized
phase retrieval problem as a first illustrative example.

2. Generalized Phase Retrieval
Phase retrieval (PR) is a classic problem in computational
imaging with stacks of applications (Bendory et al., 2017).
This paper works with two modified (also simplified) ver-
sions of PR to illustrate our symmetry breaking idea:

Real Gaussian PR The forward model: y = |Ax|2,
where x ∈ Rn, y ∈ Rm, and A ∈ Rm×n is iid real
Gaussian. The absolute-square operator |·|2 is applied
elementwise. The only symmetry is sign, and x and
−x are mapped to the same y.

Complex Gaussian PR The forward model: y = |Ax|2,
where x ∈ Cn, y ∈ Rm, and A ∈ Cm×n is iid
complex Gaussian. The modulus-square operator |·|2
is applied elementwise. The only symmetry is global
phase shift, and eiθx for all θ ∈ [0, 2π) are mapped to
the same y.

These two versions have been intensively studied in the
recent developments of generalized PR; see, e.g., (Candes
et al., 2015; Sun et al., 2017; Fannjiang & Strohmer, 2020).

2.1. Real Gaussian PR

Figure 2. Symmetry breaking for real Gaussian phase retrieval.

In learning the square root, there is a sign symmetry and we
can break it by restricting all desired network outputs to be
positive. Here, the symmetry is the global sign of vectors
and antipodal points are mapped to the same observation.
Thus, an intuitive generalization is breaking antipodal point

pairs, and a simple solution is to make a hyperplane cut and
take samples from only one side of the hyperplane! This is
illustrated in Fig. 2 where we use the xy-hyperplane in R3.

In R3, the upper half space cut out by the xy-plane is con-
nected. Moreover, it is representative as any point in the
space (except for the plane itself) can be represented by a
point in this set by appropriate global sign adjustment, and
it cannot be made smaller to remain representative. The
following proposition says that these properties also hold
for high-dimensional spaces.

Proposition 2.1. Let R
.
= {x ∈ Rn : xn > 0} , Z .

=
{x ∈ Rn : xn = 0}. The following properties hold: 1)
(connected) R is connected in Rn; 2) (representative) Z
is of measure zero (Rudin, 2006) and for any x ∈ Rn \ Z,
either x ∈ R or −x ∈ R; and 3) (smallest) No x ∈ R
can be represented by points in R \ {x}.

The coordinate hyperplane Z we use is arbitrary, and we can
prove similar results for arbitrary hyperplanes. The set Z
is negligible, as the probability of sampling a point exactly
from Z is zero. In fact, we can break the symmetry in Z
also by recursively applying the current idea. For the sake
of simplicity, we will not pursue it here.

Now we can apply the above result to preprocess the training
samples {xi, |Axi|2} for symmetry breaking: for all xi’s,
if xi lies above Z, we simply leave it untouched; if xi lies
below Z, we switch the sign of xi; if xi happens to lie
on Z, we make a small perturbation to xi and then adjust
the sign as before. Now xi ∈ R for all i. Since R is a
connected set, when there are sufficiently dense training
samples, small perturbations to |Axi|2 always lead to only
small perturbations to xi. So we now have a nicely behaved
underlying function.

The three properties are also necessary for effective symme-
try breaking. Being representative is easy to understand. If
the representative set is not the smallest, symmetry remains
for certain points in the set and so symmetry breaking is
not complete. Now the set can be smallest representative
but not connected. An example in the setting of Proposi-
tion 2.1 would be taking out a B ( R, and considering
M

.
= (−B) ∪ (R \B). It is easy to verify that M is small-

est representative, but not connected. This leaves us the
trouble of approximating (locally) oscillatory functions.

2.2. Complex Gaussian PR

We now move to the complex case and deal with a different
kind of symmetry. Recall that in the complex Gaussian
PR, eiθx for all θ ∈ [0, 2π) are mapped to the same |Ax|2,
i.e., global phase shift is the symmetry. These “equivalent”
points form a continuous curve in the complex space, con-
trasting the antipodal point pairs in the real case. Inspired by
the real version, we seek the three properties in symmetry
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breaking. It turns out we can perform effective symmetry
breaking as follows.

Proposition 2.2. The set R
.
= {x ∈ Cn : Im(x1) =

0, x1 > 0} is a connected, smallest representative set for
Cn \ Z with Z .

= {x ∈ Cn : x1 = 0}. Moreover, Z is a
measure-zero subset of Cn.

Here Z is a coordinate hyperplane in Cm and R is restricted
half-space. R enjoys the three desired properties, similar to
the real case, despite the different symmetry. If we emulate
the argument for the real case, the construction leads to
effective symmetry breaking for the current complex case.

For general inverse problems, although the symmetries
might be very different than here and the sample spaces
could also be more complicated, the three properties, which
concern only the geometric and topological aspects of the
space, can be generalized as a basic mathematical principle
for effective symmetry breaking. Also, although the sym-
metry breaking schemes for our couple of examples seem
simple, this is the first time this general issue is addressed.
Symmetry breaking for general nonlinear inverse problems
that potentially contain multiple symmetries (e.g., Fourier
PR (Bendory et al., 2017)) might not be as straightforward.

3. Numerical Experiments
Simple comparison Our focus here is to illustrate how
symmetry breaking can lead to more efficient learning than
without for the end-to-end approach, and not to pick the
best approach for solving Gaussian PR. Hence we will not
compare our method with regularized optimization or its
hybrid with data-driven approach.

Learning models We set up an end-to-end pipeline and
use neural network models to approximate the inverse map-
pings. Learning models we consider are: Neural Network
(NN): Feedforward network with architecture m-256-128-
64-n. Wide Neural Network (WNN): The architecture
is m-512-256-128-n. Deep Neural Network (DNN): The
architecture is m-2048-1024-512-256-128-n. K-Nearest
Neighbors (K-NN) K-NN regression, where output is the
average of the values of K = 5 nearest neighbors.

Data We take m = 4n, which is just above the threshold
for ensuring injectivity (up to the symmetry) (Balan et al.,
2006). To generate data samples, we draw iid uniformly
random data points xi’s from the unit ball and consequently
generate {(xi, |Axi|2)} as the simulated datasets. All the
datasets are split into 80% training and 20% test, and 10%
of the training data are used for validation.

We conduct experiments with varying input dimension n and
dataset size. Specifically, we experiment with n = 5, 10, 15
and dataset size of 2e4, 5e4, 1e5, 1e6, respectively. We

do not test higher dimensions, in view of the exponential
growth of sample requirement to cover the high-dimensional
ball. For most practical inverse problems where the input
data tend to possess low-dimensional structures despite the
apparent high dimensions, the sample requirement will not
be an issue and our symmetric breaking scheme naturally
adapts to the structures.

For all neural network models, we train them based on
two variants of the training samples: one with symmetry
untouched (i.e., before symmetry breaking) and one with
symmetry breaking (i.e., after symmetry breaking). To dis-
tinguish the two variants, we append our neural network
model names with “-A” to indicate after symmetry breaking
and “-B” to indicate before symmetry breaking.

Why no real-data experiments? One may suggest per-
forming a real-data experiment on natural images, as was
done in numerous previous papers (Candès et al., 2012; Can-
des et al., 2015; Sun et al., 2017). This is sensible, but not
interesting in the Gaussian PR context, as the sign (resp.
phase transfer) symmetry for real (resp. complex) PR is
naturally broken due to the restriction of the image values to
be real nonnegative. Moreover, the Gaussian settings erase
the essential difficulties of the classic PR, which entails in
addition flipping and translation symmetries than complex
Gaussian PR. One needs to work out the symmetry breaking
in order to perform real-data experiments under the classic
setting; we leave it as future work.

Training and error metric The mean loss is used in the
objective. We use the Adam optimizer (Kingma & Ba, 2014)
and train all models for a maximum of 100 epochs. The
learning rate is set as 0.001 by default and training is stopped
if the validation loss does not reduce for 10 consecutive
epochs. The validation set is also used for hyperparameter
tuning. To train the models for the complex PR, real and
complex parts of any complex vector are concatenated into
a long real vector. The K-NN model is fit on the whole
training dataset and serves as a baseline.

To imitate the real-world test scenario, we do not perform
symmetry breaking on the test data. To measure perfor-
mance, we use the normalized mean square error (MSE)
which is rectified to account for the symmetry:

εreal = min
s∈{+1,−1}

||x̂s− x||2

n
, (real) (3.1)

εcomp = min
θ∈[0,2π)

||x̂eiθ − x||2

n
., (complex) (3.2)

where x̂ is the prediction by the learned models.

Quantitative Results Table 1 provides test errors for all
models trained for real PR. All models for the same combi-
nation of input dimension n and sample size use the same
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Table 1. Summary of results in terms of test error for real Gaussian PR. These numbers needs to be scaled by 10−4. Blue coloring indicate
the best performance in each row.

n Sample NN-A K-NN NN-B WNN-A K-NN WNN-B DNN-A K-NN DNN-B

5

2e4 10 17 283 8 18 283 10 19 284
5e4 6 12 282 8 17 284 7 14 285
1e5 5 10 284 5 12 283 13 18 284
1e6 4 7 283 5 6 283 7 8 283

10

2e4 11 20 82 9 22 82 8 21 82
5e4 9 16 82 6 18 82 9 20 82
1e5 9 16 82 6 15 82 8 17 82
1e6 7 13 82 5 10 82 9 11 82

15

2e4 12 17 38 9 16 38 9 16 38
5e4 11 14 38 9 14 38 8 15 38
1e5 10 13 38 8 13 38 7 13 38
1e6 8 9 38 7 10 38 9 10 38

set of data. Blued numbers in the tables indicate the best-
performing models across all the models in each row.

We first note that for the same NN architecture with any
dimension-sample combination, symmetry breaking always
leads to substantially improved performance. Without sym-
metry breaking, i.e., as shown in the (·)-B columns, the
estimation errors are always worse, if not significantly so,
than the simple baseline K-NN model. By contrast, sym-
metry breaking as shown in the (·)-A columns always leads
to improved performance compared to the baseline. To rule
out the possibility that the inferior performance of (·)-B’s is
due to the capacity of the NNs, we compare the performance
of NN with that of WNN and DNN, where the latter two
have 4× and 50× more parameters than the plain NN.

From Table 1, it is clear that larger capacities do not lead to
improved performance, suggesting that our plain NNs are
probably already powerful enough. Moreover, for a fixed
learning model, increasing the number of samples beyond
2e4 yields only marginally improved errors, suggesting that
bad performance cannot be attributed to lack of samples.
These observations together show that (·)-B’s are inefficient
learners, as they do not explicitly handle the symmetry issue.

Moreover, as the dimension n grows, there is a persistent
trend that the (·)-B models performs incrementally better.
This might be counter-intuitive at first sight, as the coverage
of the space becomes sparser as the dimension grows with
same number of random samples and hence a reverse trend
could be expected. But as we hinted in Section 1, more train-
ing samples also cause more wildly behaved functions—the
problem becomes less severe when the dimension grows, as
the density of sample points becomes smaller. In fact, when
the sample density is extremely low, the other trend that is
dictated by the lack of samples could reveal. Nonetheless,
here we focus on the data-intensive regime. Overall, the
difficulty of approximating highly oscillatory functions and
the benefit of breaking breaking are evident.

We obtain similar results on complex PR, which can be
found in our full paper (Tayal et al., 2020).

4. Related Work
The end-to-end approach is attractive when (i) the forward
model is unknown—e.g., for complex imaging systems (Ho-
risaki et al., 2016; Li et al., 2018); (ii) or alternatives rarely
work, e.g., PR (Fienup, 1982; Sinha et al., 2017).

The end-to-end approach has been applied to a number of
nonlinear inverse problems with symmetries, e.g., blind im-
age deblurring (i.e., blind deconvolution) (Tao et al., 2018),
real-valued Fourier phase retrieval (Sinha et al., 2017), 3D
surface tangents and normal prediction (Huang et al., 2019).
We believe our work represents the first time that the dif-
ficulty of learning with symmetries is articulated and ad-
dressed.

Mathematically, points related by symmetries form an equiv-
alence class and these equivalence classes form a partition
of the input space for the forward model. Our symmetric
breaking task effectively consists in finding a consistent
representation for the equivalence classes, where the con-
sistency here requires the set of the representatives to be
topologically connected.

One limitation of our approach is figuring out the symmetry,
which requires full or partial (maybe through experimenta-
tion) knowledge about the forward model which may not
be available in general. As such, we refer the readers to
the exciting work of (Krippendorf & Syvaeri, 2020) which
present methods to detect symmetries based on the learning
approach.
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