
Phase Retrieval via Second-Order Nonsmooth Optimization

Zhong Zhuang 1 Gang Wang 1 Yash Travadi 2 Ju Sun 3

Abstract
We propose a new formulation for Fourier phase
retrieval, and develop a second-order optimiza-
tion method for solving it. The new method is
remarkably stable and enjoys substantially im-
proved convergence compared to popular Fourier
phase retrieval methods.

1. Introduction
Phase retrieval (PR) is the problem of recovering a complex-
valued matrix X ∈ Cn×n from its Fourier magnitudes
Y = |F(X)|2 ∈ Rm×m+ (typically m ≥ n, i.e., oversam-
pled Fourier transform and |·|2 is applied element-wise).
PR arises in diverse areas of scientific imaging, where the
imaging process can be modeled as the Fourier transform.
Due to physical limitations, however, practical imaging de-
tectors can only record the Fourier magnitudes but not the
phases (Bendory et al., 2017; Fannjiang & Strohmer, 2020).

At best, X can only be recovered from Y up to: i) a global
phase, i.e., Xeiθ for an unknown θ ∈ [0, 2π); ii) shift of X
(if there are zero boundary rows or columns); and, iii) 2D
flipping of X , all due to properties of the Fourier transform.
Recovery up to these intrinsic symmetries is possible for
generic X’s when m ≥ 2n − 1 (Hayes, 1982; Bendory
et al., 2017), which we always assume in this paper.

For actual computation, PR is often set up in Cm×m, instead
of Cn×n. Oversampled Fourier transform on X amounts to
padding X with 0 blocks to make it sizem×m and then per-
forming order m×m 2D Fourier transform (see Section 2.1
for details). Denote the padded matrix as Z ∈ Cm×m, then
|F(Z)|2 = Y and projection of Z on the padded blocks are
0, inducing two constraints on Z. Popular methods for PR,
including hybrid input-output (HIO) (Fienup, 1982), relaxed
averaged alternating reflections (RAAR) (Bauschke et al.,
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2002; Luke, 2004), as well as difference map (DM) (Elser
et al., 2007), are all variants of proximal (projection) split-
ting methods to find an intersection point of the two, some-
times with one or two additional, constraint sets (Marchesini,
2006; Combettes & Pesquet, 2011; Luke, 2020).

Unfortunately, these popular methods are sensitive to op-
timization hyper-parameters, and bad choices may lead to
stagnation or sluggish convergence. Even if the parame-
ter setting is appropriate, these methods typically require a
large number of iterations to converge to an acceptable so-
lution.1 To address these challenges, a two-stage procedure
is often implemented in practice: one of these methods is
first run for a limited number of iterations to find a good
initialization, and then local descent methods such as the
celebrated error-reduction method (Gerchberg & Saxton,
1972; Fienup, 1982) are deployed for rapid refinement to
the initial solution. Overall, the resulting hybrid algorithm
tends to converge faster, but deciding a reliable switching
point is tricky in practice and requires expert knowledge
or extra computations—the quality of the initialization is
critical to the success of the algorithm.

In this paper, we propose a new method for PR. Our method
is based on a novel constrained formulation for PR, which
is solved using the augmented Lagrangian method (ALM).
The resulting nonsmooth primal subproblem is solved by
an efficient quasi-Newton method, which leads to the fast
convergence of our method in practice. Preliminary compar-
ison with HIO demonstrates that our new method requires
less parameter tuning but produces much more reliable and
consistent recovery performance. Remarkably, our method
exhibits order-of-magnitude faster convergence than HIO,
on par with another second-order algorithm based on a sad-
dle point formulation which tends to be more involved tech-
nically (Marchesini, 2007; Tripathi et al., 2015).

Another motivation for developing alternative, and hopefully
more robust, PR methods is theoretical. As discussed above,
popular methods for PR all fall under projection methods
that tackle feasibility formulations of PR. This is surpris-
ingly narrow when compared to the wide variety of effective
formulations and numerical algorithms for other practical

1When X is known to be real-valued and have non-negative
entries, an additional non-negative constraint is often enforced
which can substantially improve the convergence.
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problems, and also sets a considerably high entry point for
theoretical development (Fannjiang & Zhang, 2020; Levin
& Bendory, 2019; Barnett et al., 2018). Our vastly different
formulation and method offer a new opportunity here.

2. New Formulation and Method for PR
2.1. Background

Let X ∈ Cn×n. Our PR model is Y = |F(X)|2 ∈ Rm×m,
where |·|2 is applied element-wise. We assume m ≥ 2n− 1
and F denotes the m ×m 2D discrete Fourier transform,
i.e., for any Z ∈ Cm×m, F(Z) = FZF>, where F =

[e−i
2π
m (i−1)(j−1)]ij/

√
m is the m×m normalized discrete

Fourier matrix. With slight abuse of notation, we write
F(X) to mean

F(X) = F

[
X 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

]
F> (1)

i.e., X is padded with 0 blocks to have size m×m before
the transform is performed.

In view of the oversampling operator Eq. (1), we define
a linear operator A : Cm×m → Cm2−n2

so that for any
Z ∈ Cm×m, A(Z) collects elements of Z—except for the
top-left n × n block—by the column order into a length-(
m2 − n2

)
vector. So PR can be naturally phrased as a

feasibility problem2

find Z ∈ Cm×m s. t. |F(Z)|2 = Y︸ ︷︷ ︸
M

, A(Z) = 0︸ ︷︷ ︸
S

(2)

whereM and S are the magnitude and support constraints,
respectively.

Projections ontoM and onto S both admit simple solutions

PM(Z) = F−1

(√
Y � F(Z)

|F(Z)|

)
(3)

PS(Z) =

{
Zij i ≤ n and j ≤ n
0 otherwise

(4)

where � denotes the pointwise (Hadamard) product. This
makes projection-type methods practical. Although S is a
convex set, M is a nonconvex set. In practice, the naive
version of alternating projection does not work for PR (Ger-
chberg & Saxton, 1972; Fienup, 1982), motivating develop-
ment of the modified versions: HIO, RAAR, and DM that
work reasonably well on natural images (Marchesini, 2006).

Here, we highlight HIO, which is application of the famous
Douglas-Rachford splitting method (Lindstorm & Sims,

2One may wonder why the problem is not directly formulated
in Cn×n, then only a single constraint |F(X)|2 = Y is involved.
The reason is that no effective methods have been discovered for
solving it in Cn×n to date.

2020; Bauschke et al., 2002) to a reformulation of Eq. (2)

min
Z∈Cm×m

δM(Z) + δS(Z) (5)

where δΠ(·) is the set indicator function which assumes 0
for input inside Π and +∞ otherwise. One can also perform
a variable-splitting to Eq. (5) and obtain a constrained form:

min
Z,W∈Cm×m

δM(W ) + δS(Z) s. t. Z = W . (6)

Applying the alternating direction method of multiplier
(ADMM) to Eq. (6) also reproduces HIO (Wen et al., 2012).3

2.2. New formulation & second-order methods

The constraint A(Z) = 0 is relatively simple, and so we
leave it there and arrive at an alternative form of Eq. (2)

min
Z∈Cn×n

δM(Z) s. t. A(Z) = 0.

As will be clear later, removing an indicator function relative
to Eq. (5) allows us to employ ALM. Introducing W such
that W = Z and turning it into a penalty term, we obtain

min
Z,W

1

2
‖Z −W ‖2F + δM(W ) s. t. A(Z) = 0 (7)

which is our new formulation for PR. Now we apply ALM
to Eq. (7). We first form the augmented Lagrangian

Lρ(Z,W ,Λ)
.
=

1

2
‖Z −W ‖2F + δM(W )

+
ρ

2

∥∥∥∥A(Z) +
Λ

ρ

∥∥∥∥2

F

. (8)

The key to deploying ALM is solving the primal subproblem

min
Z,W

Lρ(Z,W ,Λ) (9)

for a fixed Λ, for which many algorithm choices are avail-
able. Here, we focus on second-order methods, hoping to
achieve fast convergence for the ALM. Since

min
Z,W

L(Z,W ) = min
Z

(min
W
L(Z,W ))

.
= min

Z
G(Z)

we have that

G(Z)
.
=

1

2
‖Z − PM(Z)‖2F +

ρ

2

∥∥∥∥A(Z) +
Λ

ρ

∥∥∥∥2

F

.

3The equivalence of Douglas-Rachford splitting and ADMM
on convex problems has been known for decades (Gabay, 1983).
This result as proved in (Wen et al., 2012) builds on a specific ar-
gument. Very recently, a formal equivalence between the Douglas-
Rachford splitting and ADMM has been established for general
nonconvex problems (Themelis & Patrinos, 2020).
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As a distance function, ‖Z − PM(Z)‖2F is globally Lips-
chitz and hence Clarke subdifferentiable (Clarke, 1990). It
can be verified that the Wirtinger (as Z is complex-valued)
subdifferentiable

1

2
(Z − PM(Z)) ⊂ ∂Z

1

2
‖Z − PM(Z)‖2F . (10)

Thus, it holds that

1

2
(Z − PM(Z) + ρA∗A(Z) +A∗(Λ)) ⊂ ∂ZG(Z).

We are ready to solve the nonsmooth minZ G(Z) using the
L-BFGS quasi-Newton method;4 for implementation, we
use the off-the-shelf package TensorLab 3.05.

Quasi-Newton methods were designed for solving smooth
problems. However, numerous recent works have empiri-
cally demonstrated its power in solving nonsmooth prob-
lems where gradients are replaced by subgradients (Lewis
& Overton, 2012; Curtis et al., 2016; Asl & Overton, 2020).
Our success here contributes another example.

We also draw inspiration from recent breakthroughs in ap-
plying semi-smooth Newton methods to solve large-scale
SDPs and certain convex machine learning problems (Yang
et al., 2015; Li et al., 2018). There, under the ALM frame-
work, the primal problem is solved by a semi-smooth New-
ton method based on surrogate Hessian derived from gen-
eralized Jacobian and the second-order information helps
achieve super-linear convergence on certain structured con-
vex problems. Here, our investigation is purely empirical
and our Hessian approximation is formed using the L-BFGS
mechanism, but we are solving the difficult nonconvex PR
problem.

2.3. Saddle-point optimization & others

To the best of our knowledge, the only available second-
order method for PR was developed in Marchesini (2007),
which considers the following objective function

L(Z) = ‖PMZ −Z‖2F − ‖PSZ −Z‖2F .

There L(Z) is minimized over ZS , i.e., the part of Z on
the support S , and maximized over ZSc , i.e., the part of Z
off the support, leading to a minimax saddle-point optimiza-
tion problem. The saddle problem is solved via a gradient
descent-ascent framework, and the step sizes are optimized
by a second-order method; see also Tripathi et al. (2015).

Another possibility is combining Douglas-Rachford with
quasi-Newton methods (Themelis & Patrinos, 2020); we are
not aware of this new method applied to PR yet.

4Proximal-Newton methods (Lee et al., 2014) can be consid-
ered too, which may also be competitive. We prefer the current
method, as it can be easily extended when there are additional
regularization terms on Z, e.g., ‖Z‖1 for promoting sparsity.

5Available online: https://www.tensorlab.net/.

3. Experiments
3.1. Setup

Algorithms. We compared our method with HIO and
saddle-point optimization (SPO) (Marchesini, 2007), all
initialized with Z0 = F−1(

√
Y � eiΘ), where Θ is a

random phase matrix. The extra variable W in our method
was initialized with W 0 = PS(Z0).

• HIO: We experimented with 5 different relaxation pa-
rameters: β ∈ {0.5, 0.6, 0.7, 0.8, 0.9}; the algorithm
stops when ‖

√
Y − |F(Z/‖Z‖F )|‖F /‖

√
Y ‖F ≤

10−6, or 105 iterations is reached.

• SPO: We used the default parameters6. The algorithm
terminates if LM (Z) = ‖PMZ −Z‖2F ≤ 10−4, or
the iteration count reaches 105.

• Ours: We generated ρ uniformly at random from
[0, 0.1] at every iteration. The algorithm terminates
if ‖Z −W ‖F ≤ 10−6, or it runs 104 iterations.

Data. We tested 22 natural images with varying resolu-
tions, some of which are shown below.

3.2. Performance and robustness

Table 1. Number of PR failures on the 22 test images

IMAGE/SIZE 25 50 100 200 300

HIO β = 0.5 1 3 4 2 4
HIO β = 0.6 2 3 3 3 2
HIO β = 0.7 3 2 4 4 4
HIO β = 0.8 3 1 4 4 2
HIO β = 0.9 3 2 3 3 3
ALM 0 2 2 3 2
SPO 3 3 2 1 2

Rsolution 25

2 4 6 8 10 12 14 16 18 20 22
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HIO-0.9
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Images
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HIO-0.9

ALM

SPO

Figure 1. Estimation errors

6We obtained a copy of the original codes from the author.

https://www.tensorlab.net/
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Performance of HIO is known to be sensitive to the β pa-
rameter, and hence we tested 5 different values as specified
above. We compared these 7 setting on 22 images. If the
distance between the recovered image X̂ and the true image
X (corrected for the symmetries) are small than 0.05, a
recovery success is declared; otherwise, it is counted as a
failure. Table 1 reports the number of failures for the 7 meth-
ods, across 5 different image resolutions: 25× 25 through
300 × 300. Overall, our ALM algorithm and SPO are the
two most stable methods across all images and resolutions,
even though we have not carefully tuned the parameters.

Relative to ALM, SPO is sensitive to initialization. Some-
times, we need to repeat the random phase initialization
several times to obtain a success. The results reported
above only count the ultimate successes. In contrast, we
do not need to perform the repeated initialization for our
method. So our method is more reliable than SPO and HIO
in terms of overall recovery performance and robustness.

3.3. Convergence

Figure 2. An easy case: evolution of the estimation error (top); and
recovered images (bottom).

We also compared the three PR methods in terms of con-
vergence performance. Here, we present the trajectories of
the estimation error versus iteration count, as well as the
recovered images by the three methods, for an easy case and

Figure 3. A hard case: evolution of the estimation error (top); and
recovered images (bottom).

a hard case, depicted in Fig. 2 and Fig. 3, respectively. For
the easy one, both SPO and our ALM algorithm converged
to a reasonable solution after several hundred iterations, but
HIO took up to 105 iterations to find a solution of lower
quality. Further, our ALM was faster than S in this case. For
the hard case, all methods struggled for a long time to find
an acceptable solution. In particular, our ALM converged
in less than 103 iterations, while SPO took about 104 iter-
ations, and HIO was again very slow. Clearly, our ALM
is much faster than the other two methods here. Moreover,
SPO encountered many plateaus, which can cause prema-
ture stopping if the stopping criterion is not carefully set. In
a nutshell, our ALM has consistent merits over HIO and
SPO in terms of convergence speed as well as recovery
performance on both the easy and hard cases.

4. Discussion
In this paper, we developed a new constrained nonconvex
optimization formulation for Fourier phase retrieval, and
proposed an efficient second-order algorithm based on the
augmented Lagrangian method. Preliminary tests using nat-
ural images showcase the merits of the proposed method
relative to several popular Fourier phase retrieval methods.
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