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Abstract
We consider the problem of recovering a complete
(i.e., square and invertible) dictionary A0, from
Y = A0X0 with Y ∈ Rn×p. This recovery set-
ting is central to the theoretical understanding of
dictionary learning. We give the first efficient al-
gorithm that provably recoversA0 whenX0 has
O (n) nonzeros per column, under suitable proba-
bility model forX0. Prior results provide recov-
ery guarantees whenX0 has only O (

√
n) nonze-

ros per column. Our algorithm is based on non-
convex optimization with a spherical constraint,
and hence is naturally phrased in the language of
manifold optimization. Our proofs give a geomet-
ric characterization of the high-dimensional objec-
tive landscape, which shows that with high prob-
ability there are no spurious local minima. Ex-
periments with synthetic data corroborate our the-
ory. Full version of this paper is available online:
http://arxiv.org/abs/1504.06785.

1. Introduction
Dictionary learning (DL) is the problem of finding a sparse
representation for a collection of input signals. Its applica-
tions span classical image processing, visual recognition,
compressive signal acquisition, and also recent deep archi-
tectures for signal classification. Recent surveys on applica-
tions and algorithms of DL include Elad (2010) and Mairal
et al (2014).

Formally, given a data matrix Y ∈ Rn×p, DL seeks an ap-
proximationY ≈ AX , whereA lies in a certain admissible
set A, andX is as sparse as possible. Typical formulations
for DL are nonconvex: the admissible set A is typically
nonconvex, and the observation map (A,X) 7→ AX is
bilinear. There is also an intrinsic symmetry in the problem
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due to sign-permutation ambiguity, which seems to pre-
clude convexification (Gribonval & Schnass (2010), Geng
& Wright (2011)). Thus, despite many empirical successes,
relatively little is known about the theoretical properties of
DL algorithms.

Towards theoretical understanding, it is natural to start with
the dictionary recovery (DR) problem: suppose that the data
matrix Y is generated as Y = A0X0, whereA0 ∈ Rn×m
andX0 ∈ Rm×p, and try to recoverA0 andX0. One might
imagine putting favorable structural assumptions onA0 and
X0 to make DR well-posed and amenable to efficient algo-
rithms. However, under natural assumptions forA0 andX0,
even proving that the target solution is a local minimum of
certain popular practical DL formulations requires nontriv-
ial analysis (Gribonval & Schnass, 2010; Geng & Wright,
2011; Schnass, 2014a;b; 2015). Obtaining global solutions
with efficient algorithms is a standing challenge.

Existing results on global dictionary recovery pertain only
to highly sparse X0. For example, Spielman et al (2012)
showed that solving a sequence of certain linear programs
can recover a complete dictionary A0 from Y , when X0

is a sparse random matrix with O(
√
n) nonzeros per col-

umn. Agarwal et al (2013a; 2013b) and Arora et al (2013;
2015) have subsequently given efficient algorithms for the
overcomplete setting (m ≥ n), based on a combination
of {clustering or spectral initialization} and local refine-
ment. These algorithms again succeed whenX0 has Õ(

√
n)

nonzeros per column (The Õ suppresses some logarithm fac-
tors). Barak et al (2014) provides efficient algorithms based
on sum-of-square hierarchy that guarantees recovery of com-
plete dictionaries whenX0 has O(nc) nonzeros per column
for any c < 1. Giving efficient algorithms which provably
succeeds in linear sparsity regime (i.e., O(n) nonzeros per
column) is an open problem. 1

1Recent works, including Arora et al (2014) and Barak et
al (2014), contain guarantees for recovery with linear sparsity,
but run in super-polynomial (quasipolynomial) time. Aside from
efficient recovery, other theoretical work on DL includes re-
sults on identifiability (Hillar & Sommer, 2011), generalization
bounds (Vainsencher et al., 2011; Mehta & Gray, 2013), and noise
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Figure 1. Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 is orthogonal. Left: Large sample
objective function EX0 [f (q)]. The only local minima are the columns ofA0 and their negatives. Center: the same function, visualized
as a height above the plane a⊥1 (a1 is the first column of A0). Right: Around the optimum, the function exhibits a small region of
positive curvature, a region of large gradient, and finally a region in which the direction away from a1 is a direction of negative curvature.

In this work, we focus on recovering a complete (i.e., in-
vertible) dictionaryA0 from Y = A0X0. We give the first
polynomial-time algorithm that provably recoversA0 when
X0 has O (n) nonzeros per column, if X0 contains i.i.d.
Bernoulli-Gaussian entries. We achieve this by formulat-
ing complete DR as a nonconvex program with spherical
constraint. Under the probability model forX0, we give a
geometric characterization of the high-dimensional objec-
tive landscape over the sphere, which shows that with high
probability (w.h.p.) there are no “spurious” local minima.
In particular, the geometric structure allows us to design
a Riemannian trust region algorithm over the sphere that
provably converges to one local minimum with an arbitrary
initialization, despite the presence of saddle points.

This paper is organized as follows. Sec. 2 will motivate
our nonconvex formulation of DR and formalize the setting.
Sec. 3 and 4 will introduce two integral parts of our algorith-
mic framework: characterization of the high-dimensional
function landscape and a Riemannian trust-region algorithm
over the sphere. Main theorems are included in Sec. 5, fol-
lowed by some numerical verification presented in Sec. 6.
Sec. 7 will close this paper by discussing implications of
this work. Due to space constraint, we only sketch high-
level ideas of the proof in this paper. Detailed proofs can be
found in the full version (Sun et al., 2015).

2. A Nonconvex Formulation for DR
We assume Y = A0X0, whereA0 ∈ Rn×n is a complete
matrix andX0 follows the Bernoulli-Gaussian (BG) model
with rate θ: [X0]ij = ΩijGij , with Ωij ∼ Ber (θ) and
Vij ∼ N (0, 1). We write compactlyX0 ∼i.i.d. BG (θ).

Since Y = A0X0 and A0 is complete, row (Y ) =
row (X0) 2 and rows ofX0 are sparse vectors in the known
subspace row (Y ). Following Spielman et al (2012), we use

stability (Gribonval et al., 2014).
2row (·) denotes the row space.

this fact to first recover the rows of X0, and subsequently
recoverA0 by solving a system of linear equations. In fact,
for X0 ∼i.i.d. BG (θ), rows of X0 are the n sparsest vec-
tors (directions) in row (Y ) w.h.p. (Spielman et al., 2012).
Thus one might try to recover them by solving3

min ‖q∗Y ‖0 s.t. q 6= 0. (2.1)

The objective is discontinuous, and the domain is an open
set. Known convex relaxations (Spielman et al., 2012; De-
manet & Hand, 2014) provably break down beyond the
aforementioned O(

√
n) sparsity level. Instead, we work

with a nonconvex alternative: 4

min f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ (q∗ŷk) , s.t. ‖q‖2 = 1, (2.2)

where Ŷ ∈ Rn×p is a proxy of Y and k indexes columns
of Ŷ . Here hµ (·) is chosen to be a convex smooth approxi-
mation to the |·| function, namely,

hµ (z) = µ log cosh

(
z

µ

)
, (2.3)

which is infinitely differentiable and µ controls the smooth-
ing level. The spherical constraint is nonconvex. Hence,
a-priori, it is unclear whether (2.2) admits efficient algo-
rithms that attain one local optimizer (Murty & Kabadi,
1987). Surprisingly, simple descent algorithms for (2.2) ex-
hibit very striking behavior: on many practical numerical
examples5, they appear to produce global solutions. Our
next section will uncover interesting geometrical structures
underlying the phenomenon.

3The notation ∗ denotes matrix transposition.
4Similar formulation has been proposed in (Zibulevsky & Pearl-

mutter, 2001) in the context of blind source separation, see also (Qu
et al., 2014).

5... not restricted to the model we assume here forA0 andX0.
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3. High-dimensional Geometry

For the moment, supposeA0 is orthogonal, and take Ŷ =
Y = A0X0 in (2.2). Figure. 1 (left) plots EX0 [f (q;Y )]
over q ∈ S2 (n = 3). Remarkably, EX0

[f (q;Y )] has
no spurious local minima. In fact, every local minimum q̂
produces a row ofX0: q̂∗Y = αe∗iX0 for some α 6= 0.

To better illustrate the point, we take the particular case
A0 = I and project the upper hemisphere above the equa-
torial plane e⊥3 onto e⊥3 . The projection is bijective and we
equivalently define a reparameterization g : e⊥3 7→ R of f .
Figure 1 (center) plots the graph of g. Obviously the only
local minimizers are 0,±e1,±e2, and they are also global
minimizers. Moreover, the apparent nonconvex landscape
has interesting structures around 0: when moving away
from 0, one sees successively a strongly convex region, a
nonzero gradient region, and a region where at each point
one can always find a direction of negative curvature, as
shown schematically in Figure. 1 (right). This geometry
implies that at any nonoptimal point, there is always at least
one direction of descent. Thus, any algorithm that can take
advantage of the descent directions will likely converge to
one global minimizer, irrespective of initialization.

Two challenges stand out when implementing this idea. For
geometry, one has to show similar structure exists for gen-
eral complete A0, in high dimensions (n ≥ 3), when the
number of observations p is finite (vs. the expectation in the
experiment). For algorithms, we need to be able to take ad-
vantage of this structure without knowingA0 ahead of time.
In Sec. 4, we describe a Riemannian trust region method
which addresses the later challenge. Now we focus on the
first one.

3.1. Geometry for orthogonalA0

In this case, we take Ŷ = Y = A0X0. Since f (q;A0X0)
= f (A∗0q;X0), the landscape of f (q;A0X0) is simply
a rotated version of that of f (q;X0), i.e., when A0 = I .
Hence we will focus on the case when A0 = I . Among
the 2n symmetric sections of Sn−1 centered around the
signed basis vectors ±e1, . . . ,±en, we work with the sec-
tion around en as an example. The result will carry over to
all sections with the same argument.

We again invoke the projection trick described above, this
time onto the equatorial plane e⊥n . This can be formally
captured by the reparameterization mapping:

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Rn−1, (3.1)

where w is the new variable in e⊥n . We study the composi-
tion g (w;Y )

.
= f (q (w) ;Y ) over the set

Γ
.
=

{
w : ‖w‖ <

√
4n−1

4n

}
. (3.2)

Our next theorem characterizes the properties of g (w). In
particular, it shows the favorable structure we observed for
n = 3 persists in high dimensions, w.h.p.6, even when p is
large yet finite, for the caseA0 is orthogonal.
Theorem 3.1. SupposeA0 = I and hence Y = A0X0 =
X0. There exist positive constants c? and C, such that for
any θ ∈ (0, 1/2) and µ < min

{
caθn

−1, cbn
−5/4

}
, when-

ever p ≥ C
µ2θ2n

3 log n
µθ , the following hold simultaneously

w.h.p.:

∇2g(w;X0) � c?θ

µ
I ∀w ‖w‖ ≤ µ

4
√

2
,

w∗∇g(w;X0)

‖w‖ ≥ c?θ ∀w µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5

w∗∇2g(w;X0)w

‖w‖2
≤ −c?θ ∀w 1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
,

and the function g(w;X0) has exactly one local minimizer

w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
, which

satisfies

‖w? − 0‖ ≤ min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (3.3)

In particular, with this choice of p, the probability the claim
fails to hold is at most 4np−10+θ(np)−7+exp (−0.3θnp)+
cd exp

(
−cepµ2θ2/n2

)
. Here ca to ce are all positive nu-

merical constants.

In words, when the samples are numerous enough, one
sees the strongly convex, nonzero gradient, and negative
curvature regions successively when moving away from
target solution 0, and the local (also global) minimizer of
g (w;Y ) is next to 0, within a distance of O (µ).

Note that q(Γ) contains all points q ∈ Sn−1 such that
q∗en = maxi |q∗ei|. We can characterize the graph of
the function f(q;X0) in the vicinity of some other signed
basis vector ±ei simply by changing the plane e⊥n to e⊥i .
Doing this 2n times (and multiplying the failure probability
in Theorem 3.1 by 2n), we obtain a characterization of f(q)
over the entirety of Sn−1.

Corollary 3.2. SupposeA0 = I and hence Y = A0X0 =
X0. There exist positive constant C, such that for any
θ ∈ (0, 1/2) and µ < min

{
caθn

−1, cbn
−5/4

}
, whenever

p ≥ C
µ2θ2n

3 log n
µθ , with probability at least 1−8n2p−10−

θ(np)−7 − exp (−0.3θnp) − cc exp
(
−cdpµ2θ2/n2

)
, the

function f (q;X0) has exactly 2n local minimizers over the
sphere Sn−1. In particular, there is a bijective map between
these minimizers and signed basis vectors {±ei}i, such

6In this work, we say some event occurs with high probability
when the failure probability is bounded by an inverse polynomial
of n and p.
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that the corresponding local minimizer q? and b ∈ {±ei}i
satisfy

‖q? − b‖ ≤
√

2 min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (3.4)

Here ca to cd are numerical constants (possibly different
from that in the above theorem).

The proof of Theorem 3.1 is conceptually straightforward:
one shows that E[f(q;X0)] has the claimed properties, and
then proves that each of the quantities of interest concen-
trates uniformly about its expectation. The detailed calcula-
tions are nontrivial.

3.2. Geometry for completeA0

For general complete dictionaries A0, we hope that the
function f retains the nice geometric structure discussed
above. We can ensure this by “preconditioning” Y such
that the output looks as if being generated from a certain
orthogonal matrix, possibly plus a small perturbation. We
can then argue that the perturbation does not significantly
affect the properties of the graph of the objective function.
Write

Y =
(

1
pθY Y

∗
)−1/2

Y . (3.5)

Note that for X0 ∼i.i.d. BG (θ), E [X0X
∗
0 ] / (pθ) = I .

Thus, one expects 1
pθY Y

∗ = 1
pθA0X0X

∗
0A
∗
0 to behave

roughly likeA0A
∗
0 and hence Y to behave like

(A0A
∗
0)
−1/2

A0X0 = UV ∗X0 (3.6)

where we write the SVD ofA0 asA0 = UΣV ∗. It is easy
to see UV ∗ is an orthogonal matrix. Hence the precondi-
tioning scheme we have introduced is technically sound.

Our analysis shows that Y can be written as

Y = UV ∗X0 + ΞX0, (3.7)

where Ξ is a matrix with small magnitude. Perturbation
analysis combines with the the above results for the orthog-
onal case yields:
Theorem 3.3. Suppose A0 is complete with its con-
dition number κ (A0). There exist positive con-
stants c? and C, such that for any θ ∈ (0, 1/2)
and µ < min

{
caθn

−1, cbn
−5/4

}
, when p ≥

C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
and Y

.
=

√
pθ (Y Y ∗)

−1/2
Y , UΣV ∗ = SVD (A0), and let Ỹ =

V U∗Y , then the following hold simultaneously w.h.p.:

∇2g(w; Ỹ ) � c?θ

2µ
I ∀w ‖w‖ ≤ µ

4
√

2
,

w∗∇g(w; Ỹ )

‖w‖ ≥ 1

2
c?θ ∀w µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5

w∗∇2g(w; Ỹ )w

‖w‖2
≤ −1

2
c?θ ∀w 1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n

and the function g(w; Ỹ ) has exactly one local minimizer

w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
, which

satisfies
‖w? − 0‖ ≤ µ

7
. (3.8)

In particular, with this choice of p, the probability the claim
fails to hold is at most 4np−10+θ(np)−7+exp (−0.3θnp)+
p−8+cd exp

(
−cepµ2θ2/n2

)
. Here ca to ce are all positive

numerical constants.

Corollary 3.4. Suppose A0 is complete with its con-
dition number κ (A0). There exist positive con-
stants c? and C, such that for any θ ∈ (0, 1/2)
and µ < min

{
caθn

−1, cbn
−5/4

}
, when p ≥

C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
and Y

.
=

√
pθ (Y Y ∗)

−1/2
Y , UΣV ∗ = SVD (A0), with probabil-

ity at least 1 − 8n2p−10 − θ(np)−7 − exp (−0.3θnp) −
p−8 − cd exp

(
−cepµ2θ2/n2

)
, the function f

(
q;V U∗Y

)
has exactly 2n local minimizers over the sphere Sn−1. In
particular, there is a bijective map between these minimizers
and signed basis vectors {±ei}i, such that the correspond-
ing local minimizer q? and b ∈ {±ei}i satisfy

‖q? − b‖ ≤
√

2µ

7
. (3.9)

Here ca to cd are numerical constants (possibly different
from that in the above theorem).

4. Riemannian Trust Region Algorithm
We do not knowA0 ahead of time, so our algorithm needs
to take advantage of the structure described above without
knowledge of A0. Intuitively, this seems possible as the
descent direction in the w space appears to also be a local
descent direction for f over the sphere. Another issue is that
although the optimization problem has no spurious local
minima, it does have many saddle points (Figure. 1). There-
fore, certain form of second-order information is needed
to help escape the saddle points. Based on these consid-
erations, we describe a Riemannian trust region method
(TRM) (Absil et al., 2007; 2009) over the sphere for this
purpose.

4.1. Trust region method for Euclidean spaces

For a function f : Rn → R and an unconstrained optimiza-
tion problem

min
x∈Rn

f (x) , (4.1)
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typical (second-order) TRM proceeds by successively form-
ing second-order approximations to f at the current iterate,

f̂ (δ;xk−1)
.
= f (xk−1) +∇∗f (xk−1) δ

+ 1
2δ
∗Q (xk−1) δ, (4.2)

where Q (xk−1) is a proxy for the Hessian matrix
∇2f (xk−1), which encodes the second-order geometry.
The next iterate is determined by seeking a minimum of
f̂ (δ;xk−1) over a small region, normally an `2 ball, com-
monly known as the trust region. Thus, the well known trust
region subproblem takes the form

δk
.
= arg min
δ∈Rn,‖x‖≤∆

f̂ (δ;xk−1) , (4.3)

where ∆ is called the trust-region radius that controls how
far the movement can be made. A ratio

ρk
.
=
f (xk−1)− f (xk−1 + δk)

f̂ (0)− f̂ (δk−1)
(4.4)

is defined to measure the progress and typically the radius
∆ is updated dynamically according to ρk to adapt to the
local function behavior. If the progress is satisfactory, the
next iterate is (perhaps plus some line search improvement)

xk = xk−1 + δk. (4.5)

Detailed introduction to the classical TRM can be found in
the texts (Conn et al., 2000; Nocedal & Wright, 2006).

4.2. Trust region method over the sphere

To generalize the idea to smooth manifolds, one natu-
ral choice is to form the approximation over the tangent
spaces (Absil et al., 2007; 2009). Specific to our spher-
ical manifold, for which the tangent space at an iterate
qk ∈ Sn−1 is TqkSn−1 .

= {v : v∗qk = 0}, we work with
the quadratic approximation f̂ : TqkSn−1 7→ R defined as

f̂(qk, δ)
.
= f(qk) + 〈∇f(qk), δ〉

+
1

2
δ∗
(
∇2f(qk)− 〈∇f(qk), qk〉 I

)
δ. (4.6)

To interpret this approximation, let PTqk
Sn−1

.
= (I − qkq∗k)

be the orthoprojector onto TqkSn−1 and write (4.6) into an
equivalent form:

f̂(qk, δ)
.
= f(qk) +

〈
PTqk

Sn−1∇f(qk), δ
〉

+
1

2
δ∗PTqk

Sn−1

(
∇2f(qk)− 〈∇f(qk), qk〉 I

)
PTqk

Sn−1δ.

The two terms

gradf (qk)
.
= PTqk

Sn−1∇f(qk),

Hessf (qk)
.
= PTqk

Sn−1

(
∇2f(qk)− 〈∇f(qk), qk〉 I

)
PTqk

Sn−1

are the Riemannian gradient and Riemannian Hessian of
f w.r.t. Sn−1, respectively (Absil et al., 2007; 2009), turn-
ing (4.6) into the form of familiar quadratic approximation,
as described in (4.2).

Then the Riemannian trust-region subproblem is

min
δ∈Tqk

Sn−1, ‖δ‖≤∆
f̂ (qk, δ) , (4.7)

where ∆ > 0 is the familiar trust-region parameter. Tak-
ing any orthonormal basis Uqk for TqkSn−1, we can trans-
form (4.7) into a classical trust-region subproblem:

min
‖ξ‖≤∆

f̂ (qk,Uqkξ) , (4.8)

for which very efficient numerical algorithms exist (Moré
& Sorensen, 1983; Hazan & Koren, 2014). Once we obtain
the minimizer ξ?, we set δ? = Uξ?, which solves (4.7).

One additional issue as compared to the Euclidean setting is
that now δ? is one vector in the tangent space and additive
update leads to a point outside the manifold. To resolve this,
we resort to the natural exponential map:

qk+1
.
= expqk δ? = qk cos ‖δ?‖ + δ?

‖δ?‖ sin ‖δ?‖ , (4.9)

which move the sequence to the next iterate “along the
direction”7 of δ? while staying over the sphere.

There are many variants of (Riemannian) TRM that allow
one to solve the subproblem 4.8 only approximately while
still guarantee convergence. For simplicity, we avoid the
extra burden caused thereof for analysis by solving the sub-
problem exactly via SDP relaxation: introduce

ξ̃ = [ξ∗, 1]
∗
, Ξ = ξ̃ξ̃∗, M =

[
A b
b∗ 0

]
(4.10)

where A = U∗
(
∇2f(q)− 〈∇f(q), q〉 I

)
U and b =

U∗∇f(q) for any orthobasis U of Tqk−1
Sn−1. The sub-

problem is known to be equivalent to the SDP prob-
lem (Fortin & Wolkowicz, 2004):

min
Ξ
〈M ,Ξ〉 ,

s.t.tr(Ξ) ≤ ∆2 + 1, 〈En+1,Ξ〉 = 1, Ξ � 0, (4.11)

where En+1 = en+1e
∗
n+1. The detailed trust region algo-

rithm is presented in Algorithm 1.

4.3. Algorithmic results

Using the geometric characterization in Theorem 3.1 and
Theorem 3.3, we prove that when the parameter ∆ is suf-

7Technically, moving along a curve on the manifold of which
δ? is the initial tangent vector in certain canonical way.



Complete Dictionary Recovery Using Nonconvex Optimization

Algorithm 1 Trust Region Method for Finding a Single
Sparse Vector
Input: data matrix Y ∈ Rn×p, smoothing parameter µ

and parameters ηvs = 0.9, ηs = 0.1, γi = 2, γd = 1/2,
∆max = 1, and ∆min = 10−16.

Output: q̂ ∈ Sn−1

1: Initialize q(0) ∈ Sn−1, ∆(0) and k = 1,
2: while not converged do
3: Set U ∈ Rn×(n−1) to be an orthobasis for q(k−1)⊥

4: Solve the trust region subproblem

ξ̂ = arg min
‖ξ‖≤∆(k−1)

f̂
(
q(k−1),Uξ

)
(4.12)

5: Set

δ̂ ← Uξ̂,

q̂ ← q(k−1) cos ‖δ̂‖+
δ̂

‖δ̂‖
sin ‖δ̂‖.

6: Set

ρk ←
f(q(k−1))− f(q̂)

f(q(k−1))− f̂(q(k−1), δ̂)
(4.13)

7: if ρk ≥ ηvs then
8: Set q(k) ← q̂, ∆(k) ← min

(
γi∆

(k−1),∆max

)
.

9: else if ρk ≥ ηs then
10: Set q(k) ← q̂, ∆(k) ← ∆(k−1).
11: else
12: Set q(k) ← q(k−1),

∆(k) ← max(γd∆
(k−1),∆min).

13: end if
14: Set k = k + 1.
15: end while

ficiently small8, (1) the trust region step induces at least a
fixed amount of decrease to the objective value in the neg-
ative curvature and nonzero gradient region; (2) the trust
region iterate sequence will eventually move to and stay
in the strongly convex region, and converge to the global
minima with an asymptotic quadratic rate. In particular, the
geometry implies that from any initialization, the iterate
sequence converges to a close approximation to one local
minimizer in a polynomial number of steps.

The following two theorems collect these results, for orthog-
onal and general completeA0, respectively.

Theorem 4.1 (Orthogonal dictionary). Suppose the dic-
tionary A0 is orthogonal. Then there exists a posi-

8For simplicity of analysis, we have assumed ∆ is fixed
throughout the analysis. In practice, dynamic updates to ∆ tends
to lead to faster convergence.

tive constant C, such that for all θ ∈ (0, 1/2), and
µ < min

{
caθn

−1, cbn
−5/4

}
, whenever exp(n) ≥

p ≥ Cn3 log n
µθ/(µ

2θ2), with probability at least
1 − 8n2p−10 − θ(np)−7 − exp (−0.3θnp) − p−10 −
cc exp

(
−cdpµ2θ2/n2

)
, the Riemannian trust-region algo-

rithm with input data matrix Ŷ = Y , any initialization q(0)

on the sphere, and a step size satisfying

∆ ≤ min

{
cec?θµ

2

n5/2 log3/2 (np)
,

cfc
3
?θ

3µ

n7/2 log7/2 (np)

}
.

returns a solution q̂ ∈ Sn−1 which is ε near to one of the
local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in

max

{
cgn

6 log3 (np)

c3?θ
3µ4

,
chn

c2?θ
2∆2

}(
f(q(0))− f(q?)

)
+ log log

cic?θµ

εn3/2 log3/2 (np)

iterations. Here c? is as defined in Theorem 3.1, and ca, cb
are the same numerical constants as defined in Theorem 3.1,
cc to ci are other positive numerical constants.

Proofs for the complete case basically follows from that the
slight perturbation of structure parameters as summarized
in Theorem 3.3 (vs. Theorem 3.1) change all algorithm
parameter by at most small multiplicative constants.

Theorem 4.2 (Complete dictionary). Suppose the dic-
tionary A0 is complete with condition number κ (A0).
There exists a positive constant C, such that for all θ ∈
(0, 1/2), and µ < min

{
caθn

−1, cbn
−5/4

}
, whenever

exp(n) ≥ p ≥ C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
,

with probability at least 1 − 8n2p−10 − θ(np)−7 −
exp (−0.3θnp)− 2p−8 − cc exp

(
−cdpµ2θ2/n2

)
, the Rie-

mannian trust-region algorithm with input data matrix
Y

.
=
√
pθ (Y Y ∗)

−1/2
Y where UΣV ∗ = SVD (A0), any

initialization q(0) on the sphere and a step size satisfying

∆ ≤ min

{
cec?θµ

2

n5/2 log3/2 (np)
,

cfc
3
?θ

3µ

n7/2 log7/2 (np)

}
.

returns a solution q̂ ∈ Sn−1 which is ε near to one of the
local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in

max

{
cgn

6 log3 (np)

c3?θ
3µ4

,
chn

c2?θ
2∆2

}(
f(q(0))− f(q?)

)
+ log log

cic?θµ

εn3/2 log3/2 (np)

iterations. Here c? is as defined in Theorem 3.1, and ca, cb
are the same numerical constants as defined in Theorem 3.1,
cc to ci are other positive numerical constants.
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5. Main Results
For orthogonal dictionaries, from Theorem 3.1 and its corol-
lary, we know that all the minimizers q̂? areO(µ) away from
their respective nearest “target” q?, with q∗?Ŷ = αe∗iX0

for certain α 6= 0 and i ∈ [n]; in Theorem ??, we have
shown that w.h.p. the Riemannian TRM algorithm produces
a solution q̂ ∈ Sn−1 that is ε away to one of the minimiz-
ers, say q̂?. Thus, the q̂ returned by the TRM algorithm
is O(ε + µ) away from q?. For exact recovery, we use a
simple linear programming rounding procedure, which guar-
antees to exactly produce the optimizer q?. We then use
deflation to sequentially recover other rows ofX0. Overall,
w.h.p. both the dictionaryA0 and sparse coefficientX0 are
exactly recovered up to sign permutation, when θ ∈ Ω(1),
for orthogonal dictionaries. The same procedure can be
used to recover complete dictionaries, though the analy-
sis is slightly more complicated. Our overall algorithmic
pipeline for recovering orthogonal dictionaries is sketched
as follows.

1. Estimating one row of X0 by the Riemannian
TRM algorithm. By Theorem 3.1 (resp. Theorem 3.3)
and Theorem 4.1 (resp. Theorem 4.2), starting from
any, when the relevant parameters are set appropri-
ately (say as µ? and ∆?), w.h.p., our Riemannian TRM
algorithm finds a local minimizer q̂, with q? the near-
est target that exactly recovers one row of X0 and
‖q̂ − q?‖ ∈ O(µ) (by setting the target accuracy of
the TRM as, say, ε = µ).

2. Recovering one row of X0 by rounding. To obtain
the target solution q? and hence recover (up to scale)
one row ofX0, we solve the following linear program:

min
q
‖q∗Ŷ ‖1, s.t. 〈r, q〉 = 1, (5.1)

with r = q̂. We show that when 〈q̂, q?〉 is sufficiently
large, implied by µ being sufficiently small, w.h.p. the
minimizer of (5.1) is exactly q?, and hence one row of
X0 is recovered by q∗?Ŷ .

3. Recovering all rows ofX0 by deflation. Once ` rows
of X0 (1 ≤ ` ≤ n − 2) have been recovered, say,
by unit vectors q1

?, . . . , q
`
?, one takes an orthonormal

basis U for [span
(
q1
?, . . . , q

`
?

)
]⊥, and minimizes the

new function h(z)
.
= f(Uz; Ŷ ) on the sphere Sn−`−1

with the Riemannian TRM algorithm (though conser-
vative, one can again set parameters as µ?, ∆?, as in
Step 1) to produce a ẑ. Another row ofX0 is then re-
covered via the LP rounding (5.1) with input r = Uẑ
(to produce q`+1

? ). Finally, by repeating the procedure
until depletion, one can recover all the rows ofX0.

4. Reconstructing the dictionary A0. By solving the

linear systemY = AX0, one can obtain the dictionary
A0 = Y X∗0 (X0X

∗
0 )
−1.

Formally, we have the following results:
Theorem 5.1 (Orthogonal Dictionary). Assume the dic-
tionary A0 is orthogonal and we take Ŷ = Y . Sup-
pose θ ∈ (0, 1/3), µ? < min

{
caθn

−1, cbn
−5/4

}
, and

p ≥ Cn3 log n
µ?θ

/
(
µ2
?θ

2
)
. The above algorithmic pipeline

with parameter setting

∆? ≤ min

{
ccc?θµ

2
?

n5/2 log5/2 (np)
,

cdc
3
?θ

3µ?

n7/2 log7/2 (np)

}
,

recovers the dictionaryA0 andX0 in polynomial time, with
failure probability bounded by cep−6. Here c? is as defined
in Theorem 3.1, and ca through ce, and C are all positive
numerical constants.
Theorem 5.2 (Complete Dictionary). Assume the
dictionary A0 is complete with condition num-
ber κ (A0) and we take Ŷ = Y . Suppose
θ ∈ (0, 1/3), µ? < min

{
caθn

−1, cbn
−5/4

}
, and

p ≥ C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
. The

algorithmic pipeline with parameter setting

∆? ≤ min

{
ccc?θµ

2
?

n5/2 log5/2 (np)
,

cdc
3
?θ

3µ?

n7/2 log7/2 (np)

}
,

recovers the dictionaryA0 andX0 in polynomial time, with
failure probability bounded by cep−6. Here c? is as defined
in Theorem 3.1, and ca through cf , and C are all positive
numerical constants.

6. Numerical Results
To corroborate our theory, we experiment with dictionary
recovery on simulated data 9 . For simplicity, we focus on
recovering orthogonal dictionaries and we declare success
once a single row of the coefficient matrix is recovered.

Since the problem is invariant to rotations, w.l.o.g. we set
the dictionary asA0 = I ∈ Rn×n. We fix p = 5n2 log(n),
and each column of the coefficient matrixX0 ∈ Rn×p has
exactly k nonzero entries, chosen uniformly random from(

[n]
k

)
. These nonzero entries are i.i.d. standard normals.

This is slightly different from the Bernoulli-Gaussian model
we assumed for analysis. For n reasonably large, these two
models produce similar behavior. For the sparsity surrogate
defined in (2.3), we fix the parameter µ = 10−2. We im-
plement Algorithm 1 with adaptive step size instead of the
fixed step size in our analysis.

To see how the allowable sparsity level varies with the di-
mension, which our theory primarily is about, we vary the

9The code is available online: https://github.com/
sunju/dl_focm

https://github.com/sunju/dl_focm
https://github.com/sunju/dl_focm
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Figure 2. Phase transition for recovering a single sparse vector
under the dictionary learning model with p = 5n2 logn.

dictionary dimension n and the sparsity k both between 1
and 150; for every pair of (k, n) we repeat the simulations in-
dependently for T = 5 times. Because the optimal solutions
are signed coordinate vectors {ei}ni=1, for a solution q̂ re-
turned by the TRM algorithm, we define the reconstruction
error (RE) to be RE = min1≤i≤n (‖q̂ − ei‖ , ‖q̂ + ei‖) .
The trial is determined to be a success once RE ≤ µ, with
the idea that this indicates q̂ is already very near the target
and the target can likely be recovered via the LP rounding
we described (which we do not implement here). Figure 2
shows the phase transition in the (n, k) plane for the or-
thogonal case. It is obvious that our TRM algorithm can
work well into the linear region whenever p ∈ O(n2 log n).
Our analysis is tight up to logarithm factors, and also the
polynomial dependency on 1/µ, which under the theory is
polynomial in n.

7. Discussion
For recovery of complete dictionaries, the LP program ap-
proach in (Spielman et al., 2012) that works with θ ≤
O(1/

√
n) only demands p ≥ Ω(n2 log n2), which is re-

cently improved to p ≥ Ω(n log4 n) (Luh & Vu, 2015),
almost matching the lower bound Ω(n log n) (i.e., when
θ ∼ 1/n). The sample complexity stated in Theorem 5.2 is
obviously much higher. It is interesting to see whether such
growth in complexity is intrinsic to working in the linear
regime. Though our experiments seemed to suggest the
necessity of p ∼ O(n2 log n) even for the orthogonal case,
there could be other efficient algorithms that demand much
less. Tweaking these three points will likely improve the
complexity: (1) The `1 proxy. The derivative and Hessians
of the log cosh function we adopted entail the tanh function,
which is not amenable to effective approximation and affects
the sample complexity; (2) Geometric characterization and
algorithm analysis. It seems working directly on the sphere
(i.e., in the q space) could simplify and possibly improve
certain parts of the analysis; (3) treating the complete case
directly, rather than using (pessimistic) bounds to treat it
as a perturbation of the orthogonal case. Particularly, gen-

eral linear transforms may change the space significantly,
such that preconditioning and comparing to the orthogonal
transforms may not be the most efficient way to proceed.

It is possible to extend the current analysis to other dictio-
nary settings. Our geometric structures and algorithms allow
plug-and-play noise analysis. Nevertheless, we believe a
more stable way of dealing with noise is to directly extract
the whole dictionary, i.e., to consider geometry and opti-
mization (and perturbation) over the orthogonal group. This
will require additional nontrivial technical work, but likely
feasible thanks to the relatively complete knowledge of the
orthogonal group (Edelman et al., 1998; Absil et al., 2009).
A substantial leap forward would be to extend the method-
ology to recovery of structured overcomplete dictionaries,
such as tight frames. Though there is no natural elimination
of one variable, one can consider the marginalization of the
objective function wrt the coefficients and work with hidden
functions. 10

Under the i.i.d. BG coefficient model, our recovery problem
is also an instance of the ICA problem. It is interesting
to ask what is vital in making the problem tractable: spar-
sity or independence. The full version (Sun et al., 2015)
includes an experimental study in this direction, which un-
derlines the importance of the sparsity prior. In fact, the
preliminary experiments there suggest the independence
assumption we made here likely can be removed without
losing the favorable geometric structures. In addition, the
connection to ICA also suggests the possibility of adapting
our geometric characterization and algorithms to the ICA
problem. This likely will provide new theoretical insights
and computational schemes to ICA.

In the surge of theoretical understanding of nonconvex
heuristics (Keshavan et al., 2010; Jain et al., 2013; Hardt,
2014; Hardt & Wootters, 2014; Netrapalli et al., 2014; Jain
& Netrapalli, 2014; Netrapalli et al., 2013; Candes et al.,
2014; Jain & Oh, 2014; Anandkumar et al., 2014; Yi et al.,
2013; Lee et al., 2013; Qu et al., 2014; Lee et al., 2013;
Agarwal et al., 2013a;b; Arora et al., 2013; 2015; 2014), the
initialization plus local refinement strategy mostly differs
from practice, whereby random initializations seem to work
well, and the analytic techniques developed are mostly frag-
mented and highly specialized. The analytic and algorithmic
we developed here hold promise to provide a coherent ac-
count of these problems. It is interesting to see to what
extent we can streamline and generalize the framework.

10This recent work (Arora et al., 2015) on overcomplete DR
has used a similar idea. The marginalization taken there is near
to the global optimum of one variable, where the function is well-
behaved. Studying the global properties of the marginalization
may introduce additional challenges.
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